IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/126674.html
   My bibliography  Save this paper

Subgradient sampling for nonsmooth nonconvex minimization

Author

Listed:
  • Le, Tam
  • Bolte, Jérôme
  • Pauwels, Edouard

Abstract

Risk minimization for nonsmooth nonconvex problems naturally leads to firstorder sampling or, by an abuse of terminology, to stochastic subgradient descent. We establish the convergence of this method in the path-differentiable case, and describe more precise results under additional geometric assumptions. We recover and improve results from Ermoliev-Norkin [27] by using a different approach: conservative calculus and the ODE method. In the definable case, we show that first-order subgradient sampling avoids artificial critical point with probability one and applies moreover to a large range of risk minimization problems in deep learning, based on the backpropagation oracle. As byproducts of our approach, we obtain several results on integration of independent interest, such as an interchange result for conservative derivatives and integrals, or the definability of set-valued parameterized integrals.

Suggested Citation

  • Le, Tam & Bolte, Jérôme & Pauwels, Edouard, 2022. "Subgradient sampling for nonsmooth nonconvex minimization," TSE Working Papers 22-1310, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:126674
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2022/wp_tse_1310.pdf
    File Function: Working paper
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bolte, Jérôme & Pauwels, Edouard & Rios-Zertuche, Rodolfo, 2020. "Long term dynamics of the subgradient method for Lipschitz path differentiable functions," TSE Working Papers 20-1110, Toulouse School of Economics (TSE).
    2. Bolte, Jérôme & Pauwels, Edouard, 2019. "Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning," TSE Working Papers 19-1044, Toulouse School of Economics (TSE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bolte, Jérôme & Pauwels, Edouard, 2021. "A mathematical model for automatic differentiation in machine learning," TSE Working Papers 21-1184, Toulouse School of Economics (TSE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:126674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.