IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/125790.html
   My bibliography  Save this paper

A Stochastic Gauss-Newton Algorithm for Regularized Semi-discrete Optimal Transport

Author

Listed:
  • Gadat, Sébastien
  • Bercu, Bernard
  • Bigot, Jérémie
  • Siviero, Emilia

Abstract

We introduce a new second order stochastic algorithm to estimate the entropically regularized optimal transport cost between two probability measures. The source measure can be arbitrary chosen, either absolutely continuous or discrete, while the target measure is assumed to be discrete. To solve the semi-dual formulation of such a regularized and semi-discrete optimal transportation problem, we propose to consider a stochastic Gauss-Newton algorithm that uses a sequence of data sampled from the source measure. This algorithm is shown to be adaptive to the geometry of the underlying convex optimization problem with no important hyperparameter to be accurately tuned. We establish the almost sure convergence and the asymptotic normality of various estimators of interest that are constructed from this stochastic Gauss-Newton algorithm. We also analyze their non-asymptotic rates of convergence for the expected quadratic risk in the absence of strong convexity of the underlying objective function. The results of numerical experiments from simulated data are also reported to illustrate the nite sample properties of this Gauss-Newton algorithm for stochastic regularized optimal transport, and to show its advantages over the use of the stochastic gradient descent, stochastic Newton and ADAM algorithms.

Suggested Citation

  • Gadat, Sébastien & Bercu, Bernard & Bigot, Jérémie & Siviero, Emilia, 2021. "A Stochastic Gauss-Newton Algorithm for Regularized Semi-discrete Optimal Transport," TSE Working Papers 21.1231, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:125790
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2021/wp_tse_1231.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Godichon-Baggioni, Antoine & Lu, Wei & Portier, Bruno, 2024. "Recursive ridge regression using second-order stochastic algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).

    More about this item

    Keywords

    Stochastic optimization; Stochastic Gauss-Newton algorithm; Optimal transport; Entropic regularization; Convergence of random variables.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:125790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.