IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/123588.html
   My bibliography  Save this paper

SuperMix: Sparse Regularization for Mixture

Author

Listed:
  • De Castro, Y.
  • Gadat, Sébastien
  • Marteau, Clément
  • Maugis, Cathy

Abstract

No abstract is available for this item.

Suggested Citation

  • De Castro, Y. & Gadat, Sébastien & Marteau, Clément & Maugis, Cathy, 2019. "SuperMix: Sparse Regularization for Mixture," TSE Working Papers 19-1040, Toulouse School of Economics (TSE), revised Sep 2020.
  • Handle: RePEc:tse:wpaper:123588
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2019/wp_tse_1040.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cristina Butucea & Pierre Vandekerkhove, 2014. "Semiparametric Mixtures of Symmetric Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 227-239, March.
    2. Gadat, Sébastien & Marteau, Clément & Maugis, Cathy, 2016. "Parameter recovery in two-component contamination mixtures: the L2 strategy," TSE Working Papers 16-653, Toulouse School of Economics (TSE), revised Feb 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Pierre Florens & Léopold Simar & Ingrid Van Keilegom, 2020. "Estimation of the Boundary of a Variable Observed With Symmetric Error," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 425-441, January.
    2. Xiaotian Zhu & David R. Hunter, 2019. "Clustering via finite nonparametric ICA mixture models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 65-87, March.
    3. Gadat, Sébastien & Marteau, Clément & Maugis, Cathy, 2016. "Parameter recovery in two-component contamination mixtures: the L2 strategy," TSE Working Papers 16-653, Toulouse School of Economics (TSE), revised Feb 2018.
    4. Yuichi Kitamura & Louise Laage, 2018. "Nonparametric Analysis of Finite Mixtures," Papers 1811.02727, arXiv.org.
    5. Hu, Hao & Wu, Yichao & Yao, Weixin, 2016. "Maximum likelihood estimation of the mixture of log-concave densities," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 137-147.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:123588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.