IDEAS home Printed from https://ideas.repec.org/p/trr/wpaper/201801.html
   My bibliography  Save this paper

Survey-weighted Generalized Linear Mixed Models

Author

Listed:
  • Jan Pablo Burgard
  • Patricia Dörr

Abstract

Regression analysis aims at the revelation of interdependencies and causalities between variables observed in the population. That is, a structure between regressors and regressants that causes the realization of the finite population is assumed, the so-called data generating process or a superpopulation model. When data points occur in an inherent clustering, mixed models are a natural modelling approach. Given the finite population realization, a consistent estimation of the superpopulation parameters is possible. However, regression analysis seldomly takes place at the level of the finite population. Rather, a survey is conducted on the population and the analyst has to use the sample for regression modeling. Under a correct regression setup, derived estimators are consistent given the sample is non-informative. Though, these conditions are hard to verify, especially when the survey design is complex, employing clustering and unequal selection probabilities. The use of sampling weights may reduce a consequent estimation bias as they could contain additional information about the sampling process conditional on which the data generating process of the sampled units becomes closer to the one of the whole population. Common estimation procedures that allow for survey weights in generalized linear mixed models require one unique survey-weight per sampling stage which are consequently nested and correspond to the random effects analyzed in the regression. However, the data inherent clustering (e.g. students in classes in schools) possibly does not correspond to the sampling stages (e.g. blocks of houses where the students’ families live). Or the analyst has no access to the detailed sample design due to dis- closure risk or the selection of units follows an unequal sampling probability scheme. Or the survey weights vary within clusters due to calibration. Therefore, we propose an estimation procedure that allows for unit-specific survey weights: The Monte-Carlo EM (MCEM) algorithm whose complete-data log-likelihood leads to a single-level modeling problem that allows a unit-specific weighting. In the E-step, the random effects are considered to be missing data. The expected (weighted) log-likelihood is approximated via Monte-Carlo integration and maximized with respect to the regression parameters. The method’s performance is evaluated in a model-based simulation study with finite populations.

Suggested Citation

  • Jan Pablo Burgard & Patricia Dörr, 2018. "Survey-weighted Generalized Linear Mixed Models," Research Papers in Economics 2018-01, University of Trier, Department of Economics.
  • Handle: RePEc:trr:wpaper:201801
    as

    Download full text from publisher

    File URL: http://www.uni-trier.de/fileadmin/fb4/prof/VWL/EWF/Research_Papers/2018-01.pdf
    File Function: First version, 2018
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sophia Rabe‐Hesketh & Anders Skrondal, 2006. "Multilevel modelling of complex survey data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 805-827, October.
    2. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    3. D. Pfeffermann & C. J. Skinner & D. J. Holmes & H. Goldstein & J. Rasbash, 1998. "Weighting for unequal selection probabilities in multilevel models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 23-40.
    4. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patricia Dörr & Jan Pablo Burgard, 2019. "Data-driven transformations and survey-weighting for linear mixed models," Research Papers in Economics 2019-16, University of Trier, Department of Economics.
    2. Jan Pablo Burgard & Patricia Dörr & Ralf Münnich, 2020. "Monte-Carlo Simulation Studies in Survey Statistics – An Appraisal," Research Papers in Economics 2020-04, University of Trier, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patricia Dörr & Jan Pablo Burgard, 2019. "Data-driven transformations and survey-weighting for linear mixed models," Research Papers in Economics 2019-16, University of Trier, Department of Economics.
    2. Hammon, Angelina & Zinn, Sabine, 2020. "Multiple imputation of binary multilevel missing not at random data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 69(3), pages 547-564.
    3. Woojin Chung & Roeul Kim, 2020. "A Reversal of the Association between Education Level and Obesity Risk during Ageing: A Gender-Specific Longitudinal Study in South Korea," IJERPH, MDPI, vol. 17(18), pages 1-19, September.
    4. Mary Ying-Fang Wang & Paul Tuss & Lihong Qi, 2019. "Augmented Weighted Estimators Dealing with Practical Positivity Violation to Causal inferences in a Random Coefficient Model," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 447-467, June.
    5. Joseph L Dieleman & Tara Templin, 2014. "Random-Effects, Fixed-Effects and the within-between Specification for Clustered Data in Observational Health Studies: A Simulation Study," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-17, October.
    6. Woojin Chung & Roeul Kim, 2020. "Differential Risk of Cognitive Impairment across Paid and Unpaid Occupations in the Middle-Age Population: Evidence from the Korean Longitudinal Study of Aging, 2006–2016," IJERPH, MDPI, vol. 17(9), pages 1-14, April.
    7. Laura M. Stapleton & Yoonjeong Kang, 2018. "Design Effects of Multilevel Estimates From National Probability Samples," Sociological Methods & Research, , vol. 47(3), pages 430-457, August.
    8. Woojin Chung & Roeul Kim, 2020. "Which Occupation is Highly Associated with Cognitive Impairment? A Gender-Specific Longitudinal Study of Paid and Unpaid Occupations in South Korea," IJERPH, MDPI, vol. 17(21), pages 1-17, October.
    9. Nora Würz & Timo Schmid & Nikos Tzavidis, 2022. "Estimating regional income indicators under transformations and access to limited population auxiliary information," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1679-1706, October.
    10. Cristiano C. Santos & Rosangela H. Loschi, 2017. "Maximum likelihood estimation and parameter interpretation in elliptical mixed logistic regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 209-230, March.
    11. Robert G. Clark & David G. Steel, 2022. "Sample design for analysis using high‐influence probability sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1733-1756, October.
    12. Francesco Schirripa Spagnolo & Nicola Salvati & Antonella D’Agostino & Ides Nicaise, 2020. "The use of sampling weights in M‐quantile random‐effects regression: an application to Programme for International Student Assessment mathematics scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 991-1012, August.
    13. Corder Nathan & Yang Shu, 2020. "Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 249-271, January.
    14. Bowen, Mary Elizabeth, 2009. "Childhood socioeconomic status and racial differences in disability: Evidence from the Health and Retirement Study (1998-2006)," Social Science & Medicine, Elsevier, vol. 69(3), pages 433-441, August.
    15. Ana Maria Osorio & Catalina Bolancé & Nyovane Madise & Katharina Rathmann, 2013. "Social Determinants of Child Health in Colombia: Can Community Education Moderate the Effect of Family Characteristics?," Working Papers XREAP2013-02, Xarxa de Referència en Economia Aplicada (XREAP), revised Mar 2013.
    16. Amini, Chiara & Nivorozhkin, Eugene, 2015. "The urban–rural divide in educational outcomes: Evidence from Russia," International Journal of Educational Development, Elsevier, vol. 44(C), pages 118-133.
    17. Yergeau, Marie-Eve, 2020. "Tourism and local welfare: A multilevel analysis in Nepal’s protected areas," World Development, Elsevier, vol. 127(C).
    18. Glen McGee & Jonathan Schildcrout & Sharon‐Lise Normand & Sebastien Haneuse, 2020. "Outcome‐dependent sampling in cluster‐correlated data settings with application to hospital profiling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 379-402, January.
    19. Oǧuz-Alper, Melike & Berger, Yves G., 2020. "Modelling multilevel data under complex sampling designs: An empirical likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    20. Corder Nathan & Yang Shu, 2020. "Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 249-271, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:trr:wpaper:201801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Matthias Neuenkirch (email available below). General contact details of provider: https://edirc.repec.org/data/petride.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.