IDEAS home Printed from https://ideas.repec.org/p/trn/utwpde/0903.html
   My bibliography  Save this paper

A note on maximum likelihood estimation of a Pareto mixture

Author

Listed:
  • Marco Bee
  • Roberto Benedetti
  • Giuseppe Espa

Abstract

In this paper we study Maximum Likelihood Estimation of the parameters of a Pareto mixture. Application of standard techniques to a mixture of Pareto is problematic. For this reason we develop two alternative algorithms. The first one is the Simulated Annealing and the second one is based on Cross-Entropy minimization. The Pareto distribution is a commonly used model for heavy-tailed data. It is a two-parameter distribution whose shape parameter determines the degree of heaviness of the tail, so that it can be adapted to data with different features. This work is motivated by an application in the operational risk measurement field: we fit a Pareto mixture to operational losses recorded by a bank in two different business lines. Losses below an unknown threshold are discarded, so that the observed data are truncated. The thresholds used in the two business lines are unknown. Thus, under the assumption that each population follows a Pareto distribution, the appropriate model is a mixture of Pareto where all the parameters have to be estimated.

Suggested Citation

  • Marco Bee & Roberto Benedetti & Giuseppe Espa, 2009. "A note on maximum likelihood estimation of a Pareto mixture," Department of Economics Working Papers 0903, Department of Economics, University of Trento, Italia.
  • Handle: RePEc:trn:utwpde:0903
    as

    Download full text from publisher

    File URL: http://www.unitn.it/files/03_09_bee.pdf
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:trn:utwpde:0903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Luciano Andreozzi (email available below). General contact details of provider: https://edirc.repec.org/data/detreit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.