IDEAS home Printed from https://ideas.repec.org/p/tor/tecipa/tecipa-562.html
   My bibliography  Save this paper

Solution and Estimation of Dynamic Discrete Choice Structural Models Using Euler Equations

Author

Listed:
  • Victor Aguirregabiria
  • Arvind Magesan

Abstract

This paper extends the Euler Equation (EE) representation of dynamic decision problems to a general class of discrete choice models and shows that the advantages of this approach apply not only to the estimation of structural parameters but also to the computation of a solution and to the evaluation of counterfactual experiments. We use a choice probabilities representation of the discrete decision problem to derive marginal conditions of optimality with the same features as the standard EEs in continuous decision problems. These EEs imply a fixed point mapping in the space of conditional choice values, that we denote the Euler equation-value (EE-value) operator. We show that, in contrast to Euler equation operators in continuous decision models, this operator is a contraction. We present numerical examples that illustrate how solving the model by iterating in the EE-value mapping implies substantial computational savings relative to iterating in the Bellman equation (that requires a much larger number of iterations) or in the policy function (that involves a costly valuation step). We define a sample version of the EE-value operator and use it to construct a sequence of consistent estimators of the structural parameters, and to evaluate counterfactual experiments. The computational cost of evaluating this sample-based EE-value operator increases linearly with sample size, and provides an unbiased (in finite samples) and consistent estimator the counterfactual. As such there is no curse of dimensionality in the consistent estimation of the model and in the evaluation of counterfactual experiments. We illustrate the computational gains of our methods using several Monte Carlo experiments.

Suggested Citation

  • Victor Aguirregabiria & Arvind Magesan, 2016. "Solution and Estimation of Dynamic Discrete Choice Structural Models Using Euler Equations," Working Papers tecipa-562, University of Toronto, Department of Economics.
  • Handle: RePEc:tor:tecipa:tecipa-562
    as

    Download full text from publisher

    File URL: https://www.economics.utoronto.ca/public/workingPapers/tecipa-562.pdf
    File Function: Main Text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    2. V. Joseph Hotz & Robert A. Miller & Seth Sanders & Jeffrey Smith, 1994. "A Simulation Estimator for Dynamic Models of Discrete Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 265-289.
    3. Victor Aguirregabiria & Pedro Mira, 2002. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Econometrica, Econometric Society, vol. 70(4), pages 1519-1543, July.
    4. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, October.
    5. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 497-529.
    6. Russell Cooper & John C. Haltiwanger & Jonathan L. Willis, 2010. "Euler-Equation Estimation for Discrete Choice Models: A Capital Accumulation Application," NBER Working Papers 15675, National Bureau of Economic Research, Inc.
    7. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
    8. Daniel Ackerberg & Xiaohong Chen & Jinyong Hahn, 2012. "A Practical Asymptotic Variance Estimator for Two-Step Semiparametric Estimators," The Review of Economics and Statistics, MIT Press, vol. 94(2), pages 481-498, May.
    9. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.
    10. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    11. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, October.
    12. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    13. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    14. Rust, John, 1996. "Numerical dynamic programming in economics," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 14, pages 619-729, Elsevier.
    15. John Rust, 1997. "Using Randomization to Break the Curse of Dimensionality," Econometrica, Econometric Society, vol. 65(3), pages 487-516, May.
    16. Coleman, Wilbur John, II, 1991. "Equilibrium in a Production Economy with an Income Tax," Econometrica, Econometric Society, vol. 59(4), pages 1091-1104, July.
    17. Coleman, Wilbur John, II, 1990. "Solving the Stochastic Growth Model by Policy-Function Iteration," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 27-29, January.
    18. Martin L. Puterman & Shelby L. Brumelle, 1979. "On the Convergence of Policy Iteration in Stationary Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 4(1), pages 60-69, February.
    19. Hansen, Lars Peter & Singleton, Kenneth J, 1982. "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 50(5), pages 1269-1286, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Solution and Estimation of Dynamic Discrete Choice Structural Models Using Euler Equations
      by Christian Zimmermann in NEP-DGE blog on 2016-06-16 19:45:29

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Hao & Hiroyuki Kasahara, 2024. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models with 2-period Finite Dependence," Papers 2405.12467, arXiv.org.
    2. Barton H. Hamilton & Andrés Hincapié & Robert A. Miller & Nicholas W. Papageorge, 2021. "Innovation And Diffusion Of Medical Treatment," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(3), pages 953-1009, August.
    3. Michele Fioretti & Alexander Vostroknutov & Giorgio Coricelli, 2022. "Dynamic Regret Avoidance," American Economic Journal: Microeconomics, American Economic Association, vol. 14(1), pages 70-93, February.
    4. Robert L. Bray, 2019. "Markov Decision Processes with Exogenous Variables," Management Science, INFORMS, vol. 65(10), pages 4598-4606, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Aguirregabiria & Arvind Magesan, 2013. "Euler Equations for the Estimation of Dynamic Discrete Choice Structural Models," Advances in Econometrics, in: Structural Econometric Models, volume 31, pages 3-44, Emerald Group Publishing Limited.
    2. Aguirregabiria, Victor & Magesan, Arvind, 2013. "Euler Equations for the Estimation of Dynamic Discrete Choice Structural," MPRA Paper 46056, University Library of Munich, Germany.
    3. Victor Aguirregabiria & Cesar Alonso-Borrego, 2014. "Labor Contracts And Flexibility: Evidence From A Labor Market Reform In Spain," Economic Inquiry, Western Economic Association International, vol. 52(2), pages 930-957, April.
    4. Victor Aguirregabiria & Pedro Mira, 2007. "Sequential Estimation of Dynamic Discrete Games," Econometrica, Econometric Society, vol. 75(1), pages 1-53, January.
    5. Daniel Ackerberg & Xiaohong Chen & Jinyong Hahn & Zhipeng Liao, 2014. "Asymptotic Efficiency of Semiparametric Two-step GMM," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(3), pages 919-943.
    6. Steven T Berry & Giovanni Compiani, 2023. "An Instrumental Variable Approach to Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1724-1758.
    7. Karun Adusumilli & Dita Eckardt, 2019. "Temporal-Difference estimation of dynamic discrete choice models," Papers 1912.09509, arXiv.org, revised Dec 2022.
    8. Rosa Papalia, 2003. "Generalized Maximum Entropy Estimation of Dynamic Programming Models with Sample Selection Bias," Computational Statistics, Springer, vol. 18(3), pages 463-475, September.
    9. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    10. Myrto Kalouptsidi & Paul T. Scott & Eduardo Souza-Rodrigues, 2018. "Linear IV Regression Estimators for Structural Dynamic Discrete Choice Models," NBER Working Papers 25134, National Bureau of Economic Research, Inc.
    11. Michaelides, Alexander & Ng, Serena, 2000. "Estimating the rational expectations model of speculative storage: A Monte Carlo comparison of three simulation estimators," Journal of Econometrics, Elsevier, vol. 96(2), pages 231-266, June.
    12. Victor Aguirregabiria & Victor Aguirregabiria & Aviv Nevo & Aviv Nevo, 2010. "Recent Developments in Empirical IO: Dynamic Demand and Dynamic Games," Working Papers tecipa-419, University of Toronto, Department of Economics.
    13. Srisuma, Sorawoot & Linton, Oliver, 2012. "Semiparametric estimation of Markov decision processes with continuous state space," Journal of Econometrics, Elsevier, vol. 166(2), pages 320-341.
    14. Kalouptsidi, Myrto & Scott, Paul T. & Souza-Rodrigues, Eduardo, 2021. "Linear IV regression estimators for structural dynamic discrete choice models," Journal of Econometrics, Elsevier, vol. 222(1), pages 778-804.
    15. Bruneel-Zupanc, Christophe Alain, 2021. "Discrete-Continuous Dynamic Choice Models: Identification and Conditional Choice Probability Estimation," TSE Working Papers 21-1185, Toulouse School of Economics (TSE).
    16. A. Norets & X. Tang, 2014. "Semiparametric Inference in Dynamic Binary Choice Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(3), pages 1229-1262.
    17. Hiroyuki Kasahara & Katsumi Shimotsu, 2006. "Nested Pseudo-likelihood Estimation And Bootstrap-based Inference For Structural Discrete Markov Decision Models," Working Paper 1063, Economics Department, Queen's University.
    18. Hancevic, Pedro Ignacio, 2017. "A dynamic approach to environmental compliance decisions in U.S. Electricity Market: The Acid Rain Program revisited," Energy Policy, Elsevier, vol. 106(C), pages 129-137.
    19. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    20. Armstrong, Timothy B. & Bertanha, Marinho & Hong, Han, 2014. "A fast resample method for parametric and semiparametric models," Journal of Econometrics, Elsevier, vol. 179(2), pages 128-133.

    More about this item

    Keywords

    Dynamic programming discrete choice models; Euler equations; Policy iteration; Estimation; Approximation bias;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tor:tecipa:tecipa-562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePEc Maintainer (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.