IDEAS home Printed from https://ideas.repec.org/p/toh/tergaa/304.html
   My bibliography  Save this paper

Term Structure Modeling and Forecasting of Government Bond Yields : Does Macroeconomic Factors Imply Better Out-of-Sample Forecasts?

Author

Listed:
  • Wali Ullah
  • Yasumasa Matsuda

Abstract

Accurate modeling and precise estimation of the term structure of interest rate are of crucial importance in many areas of finance and macroeconomics as it is the most important factor in the capital market and probably the economy. This study compares the in-sample fit and out-of-sample forecast accuracy of the CIR and Nelson-Siegel models. For the in-sample fit, there is a significant lack of information on the short-term CIR model. The CIR model should also be considered too poor to describe the term structure in a simulation based context. It generates a downward slope average yield curve. Contrary to CIR model, Nelson-Siegel model is not only compatible to fit attractively the yield curve but also accurately forecast the future yield for various maturities. Furthermore, the non-linear version of the Nelson-Siegel model outperforms the linearized one. In a simulation based context the Nelson-Siegel model is capable to replicate most of the stylized facts of the Japanese market yield curve. Therefore, it turns out that the Nelson-Siegel model (non-linear version) could be a good candidate among various alternatives to study the evolution of the yield curve in Japanese market.

Suggested Citation

  • Wali Ullah & Yasumasa Matsuda, 2012. "Term Structure Modeling and Forecasting of Government Bond Yields : Does Macroeconomic Factors Imply Better Out-of-Sample Forecasts?," TERG Discussion Papers 304, Graduate School of Economics and Management, Tohoku University.
  • Handle: RePEc:toh:tergaa:304
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10097/56545
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    2. Vasicek, Oldrich A & Fong, H Gifford, 1982. "Term Structure Modeling Using Exponential Splines," Journal of Finance, American Finance Association, vol. 37(2), pages 339-348, May.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Michiel De Pooter, 2007. "Examining the Nelson-Siegel Class of Term Structure Models," Tinbergen Institute Discussion Papers 07-043/4, Tinbergen Institute.
    5. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    6. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    7. de Jong, Frank, 2000. "Time Series and Cross-Section Information in Affine Term-Structure Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 300-314, July.
    8. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    9. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    10. Fama, Eugene F & Bliss, Robert R, 1987. "The Information in Long-Maturity Forward Rates," American Economic Review, American Economic Association, vol. 77(4), pages 680-692, September.
    11. Wali Ullah & Yoshihiko Tsukuda & Yasumasa Matsuda, 2012. "Term Structure Forecasting of Government Bond Yields with Latent and Macroeconomic Factors: Does Macroeconomic Factors Imply Better Out-of-Sample Forecasts?," TERG Discussion Papers 287, Graduate School of Economics and Management, Tohoku University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wali Ullah & Yasumasa Matsuda & Yoshihiko Tsukuda, 2013. "Term Structure Modeling and Forecasting of Government Bond Yields," Economic Papers, The Economic Society of Australia, vol. 32(4), pages 535-560, December.
    2. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    3. Wali Ullah, 2017. "Term structure forecasting in affine framework with time-varying volatility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 453-483, August.
    4. Molenaars, Tomas K. & Reinerink, Nick H. & Hemminga, Marcus A., 2013. "Forecasting the yield curve - Forecast performance of the dynamic Nelson-Siegel model from 1971 to 2008," MPRA Paper 61862, University Library of Munich, Germany.
    5. Siem Jan Koopman & Max I.P. Mallee & Michel van der Wel, 2007. "Analyzing the Term Structure of Interest Rates using the Dynamic Nelson-Siegel Model with Time-Varying Parameters," Tinbergen Institute Discussion Papers 07-095/4, Tinbergen Institute.
    6. Nagy, Krisztina, 2020. "Term structure estimation with missing data: Application for emerging markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 75(C), pages 347-360.
    7. Ranik Raaen Wahlstrøm & Florentina Paraschiv & Michael Schürle, 2022. "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 967-1004, March.
    8. Tong, Xiaojun & He, Zhuoqiong Chong & Sun, Dongchu, 2018. "Estimating Chinese Treasury yield curves with Bayesian smoothing splines," Econometrics and Statistics, Elsevier, vol. 8(C), pages 94-124.
    9. Cem Çakmakli, 2012. "Bayesian Semiparametric Dynamic Nelson-Siegel Model," Working Paper series 59_12, Rimini Centre for Economic Analysis, revised Sep 2012.
    10. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, December.
    11. Coroneo, Laura & Nyholm, Ken & Vidova-Koleva, Rositsa, 2011. "How arbitrage-free is the Nelson-Siegel model?," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 393-407, June.
    12. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2018. "A term structure model under cyclical fluctuations in interest rates," Economic Modelling, Elsevier, vol. 72(C), pages 140-150.
    13. Wali Ullah & Yoshihiko Tsukuda & Yasumasa Matsuda, 2012. "Term Structure Forecasting of Government Bond Yields with Latent and Macroeconomic Factors: Does Macroeconomic Factors Imply Better Out-of-Sample Forecasts?," TERG Discussion Papers 287, Graduate School of Economics and Management, Tohoku University.
    14. repec:jss:jstsof:36:i01 is not listed on IDEAS
    15. Rui Chen & Jiri Svec & Maurice Peat, 2016. "Forecasting the Government Bond Term Structure in Australia," Australian Economic Papers, Wiley Blackwell, vol. 55(2), pages 99-111, June.
    16. Michiel De Pooter, 2007. "Examining the Nelson-Siegel Class of Term Structure Models," Tinbergen Institute Discussion Papers 07-043/4, Tinbergen Institute.
    17. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
    18. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    19. Wei-Choun Yu & Donald M. Salyards, 2009. "Parsimonious modeling and forecasting of corporate yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 73-88.
    20. Raviv, Eran, 2015. "Prediction bias correction for dynamic term structure models," Economics Letters, Elsevier, vol. 129(C), pages 112-115.
    21. Emma Berenguer-Carceles & Ricardo Gimeno & Juan M. Nave, 2012. "Estimation of the Term Structure of Interest Rates: Methodology and Applications," Working Papers 12.06, Universidad Pablo de Olavide, Department of Financial Economics and Accounting (former Department of Business Administration).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:toh:tergaa:304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tohoku University Library (email available below). General contact details of provider: https://edirc.repec.org/data/fetohjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.