IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2003cf194.html
   My bibliography  Save this paper

A Two-Stage Prediction Model for Web Page Transition

Author

Listed:
  • Makoto Abe

    (Faculty of Economics, University of Tokyo)

Abstract

Utilizing data from a log file, a two-stage model for step-ahead web page prediction that permits adaptive page customization in real-time is proposed. The first stage predicts the next page of a viewer based on a variant of a Markov transition matrix computed from page sequences of other visitors who read the same pages as that viewer did thus far. The second stage re-analyzes the incorrect exit/continuation predictions of the first stage through data mining, incorporating the visitor's viewing behavior observed from the log file. The two-stage process takes advantage of a robust, theory-driven nature of statistical modeling for extracting the overall feature of the data, and a flexible, data-driven nature of data mining to capture any idiosyncrasies and complications unresolved in the first stage. The empirical result with a test site implies that the first stage alone is sufficiently accurate (50.3%) in predicting page transitions. Prediction of site exit was even better with 100% of the exit and 90.8% of the continuation predictions being correct. The result was compared against other models for predictive accuracy.

Suggested Citation

  • Makoto Abe, 2003. "A Two-Stage Prediction Model for Web Page Transition," CIRJE F-Series CIRJE-F-194, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2003cf194
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2003/2003cf194.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick Mair & Marcus Hudec, 2009. "Multivariate Weibull mixtures with proportional hazard restrictions for dwell‐time‐based session clustering with incomplete data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(5), pages 619-639, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2003cf194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.