IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2002cf165.html
   My bibliography  Save this paper

Can the neuro fuzzy model predict stock indexes better than its rivals?

Author

Listed:
  • Chin-Shien Lin

    (Department of Finance, Providence University)

  • Haider Ali Khan

    (GSIS, University of Denver and CIRJE, Faculty of Economics, University of Tokyo)

  • Chi-Chung Huang

    (Graduate School of Business Administration, Providence University)

Abstract

This paper develops a model of a trading system by using neuro fuzzy framework in order to better predict the stock index. Thirty well-known stock indexes are analyzed with the help of the model developed here. The empirical results show strong evidence of nonlinearity in the stock index by using KD technical indexes. The trading point analysis and the sensitivity analysis of trading costs show the robustness and opportunity for making further profits through using the proposed nonlinear neuro fuzzy system. The scenario analysis also shows that the proposed neuro fuzzy system performs consistently over time.

Suggested Citation

  • Chin-Shien Lin & Haider Ali Khan & Chi-Chung Huang, 2002. "Can the neuro fuzzy model predict stock indexes better than its rivals?," CIRJE F-Series CIRJE-F-165, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2002cf165
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2002/2002cf165.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Basu, S, 1977. "Investment Performance of Common Stocks in Relation to Their Price-Earnings Ratios: A Test of the Efficient Market Hypothesis," Journal of Finance, American Finance Association, vol. 32(3), pages 663-682, June.
    4. Lakonishok, Josef & Shleifer, Andrei & Vishny, Robert W, 1994. "Contrarian Investment, Extrapolation, and Risk," Journal of Finance, American Finance Association, vol. 49(5), pages 1541-1578, December.
    5. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    6. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    7. Jensen, Michael C & Bennington, George A, 1970. "Random Walks and Technical Theories: Some Additional Evidence," Journal of Finance, American Finance Association, vol. 25(2), pages 469-482, May.
    8. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
    9. Bessembinder, Hendrik & Chan, Kalok, 1995. "The profitability of technical trading rules in the Asian stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 3(2-3), pages 257-284, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey SVESHNIKOV & Victor BOCHARNIKOV, 2009. "Eforecasting Financial Indexes With Model Of Composite Events Influence," Journal of Applied Economic Sciences, Spiru Haret University, Faculty of Financial Management and Accounting Craiova, vol. 4(3(9)_Fall).
    2. Muhammad Zubair Mumtaz, 2021. "Predicting Stock Indices Trends using Neuro-fuzzy Systems in COVID-19," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 26(2), pages 1-18, July-Dec.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osman Kilic & Joseph M. Marks & Kiseok Nam, 2022. "Predictable asset price dynamics, risk-return tradeoff, and investor behavior," Review of Quantitative Finance and Accounting, Springer, vol. 59(2), pages 749-791, August.
    2. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    3. Tania Morris & Jules Comeau, 2020. "Portfolio creation using artificial neural networks and classification probabilities: a Canadian study," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(2), pages 133-163, June.
    4. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    5. Attiya Yasmeen Javid, 2000. "Alternative Capital Asset Pricing Models: A Review of Theory and Evidence," PIDE Research Report 2000:3, Pakistan Institute of Development Economics.
    6. Qianwei Ying & Tahir Yousaf & Qurat ul Ain & Yasmeen Akhtar & Muhammad Shahid Rasheed, 2019. "Stock Investment and Excess Returns: A Critical Review in the Light of the Efficient Market Hypothesis," JRFM, MDPI, vol. 12(2), pages 1-22, June.
    7. John Y. Campbell & Tuomo Vuolteenaho, 2004. "Bad Beta, Good Beta," American Economic Review, American Economic Association, vol. 94(5), pages 1249-1275, December.
    8. Smith, Daniel R., 2007. "Conditional coskewness and asset pricing," Journal of Empirical Finance, Elsevier, vol. 14(1), pages 91-119, January.
    9. Committee, Nobel Prize, 2013. "Understanding Asset Prices," Nobel Prize in Economics documents 2013-1, Nobel Prize Committee.
    10. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2014, January-A.
    11. Polk, Christopher & Thompson, Samuel & Vuolteenaho, Tuomo, 2006. "Cross-sectional forecasts of the equity premium," Journal of Financial Economics, Elsevier, vol. 81(1), pages 101-141, July.
    12. Zura Kakushadze, 2015. "Heterotic Risk Models," Papers 1508.04883, arXiv.org, revised Jan 2016.
    13. Christopher Polk & Samuel Thompson & Tuomo Vuolteenaho, 2004. "New Forecasts of the Equity Premium," NBER Working Papers 10406, National Bureau of Economic Research, Inc.
    14. Zura Kakushadze & Willie Yu, 2016. "Statistical Risk Models," Papers 1602.08070, arXiv.org, revised Jan 2017.
    15. Ślepaczuk Robert & Sakowski Paweł & Zakrzewski Grzegorz, 2018. "Investment Strategies that Beat the Market. What Can We Squeeze from the Market?," Financial Internet Quarterly (formerly e-Finanse), Sciendo, vol. 14(4), pages 36-55, December.
    16. Zura Kakushadze & Jim Kyung-Soo Liew, 2014. "Custom v. Standardized Risk Models," Papers 1409.2575, arXiv.org, revised May 2015.
    17. Attiya Y. Javed, 2000. "Alternative Capital Asset Pricing Models: A Review of Theory and Evidence," PIDE-Working Papers 2000:179, Pakistan Institute of Development Economics.
    18. Stefano Gubellini, 2014. "Conditioning information and cross-sectional anomalies," Review of Quantitative Finance and Accounting, Springer, vol. 43(3), pages 529-569, October.
    19. Zura Kakushadze, 2014. "4-Factor Model for Overnight Returns," Papers 1410.5513, arXiv.org, revised Jun 2015.
    20. Zura Kakushadze & Willie Yu, 2016. "Multifactor Risk Models and Heterotic CAPM," Papers 1602.04902, arXiv.org, revised Mar 2016.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2002cf165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.