IDEAS home Printed from https://ideas.repec.org/p/tiu/tiutis/abc9f83d-960e-40c5-ae40-3845302531de.html
   My bibliography  Save this paper

Using supervised machine learning to scale human‐coded data: A method and dataset in the board leadership context

Author

Listed:
  • Harrison, Joseph S.
  • Josefy, Matthew A.
  • Kalm, Matias

    (Tilburg University, School of Economics and Management)

  • Krause, Ryan

Abstract

No abstract is available for this item.

Suggested Citation

  • Harrison, Joseph S. & Josefy, Matthew A. & Kalm, Matias & Krause, Ryan, 2022. "Using supervised machine learning to scale human‐coded data: A method and dataset in the board leadership context," Other publications TiSEM abc9f83d-960e-40c5-ae40-3, Tilburg University, School of Economics and Management.
  • Handle: RePEc:tiu:tiutis:abc9f83d-960e-40c5-ae40-3845302531de
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Matthew Gentzkow & Bryan Kelly & Matt Taddy, 2019. "Text as Data," Journal of Economic Literature, American Economic Association, vol. 57(3), pages 535-574, September.
    2. Kris Boudt & James Thewissen, 2019. "Jockeying for Position in CEO Letters: Impression Management and Sentiment Analytics," Financial Management, Financial Management Association International, vol. 48(1), pages 77-115, March.
    3. Matthew Gentzkow & Bryan T. Kelly & Matt Taddy, 2017. "Text as Data," NBER Working Papers 23276, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Max Nathan & Anna Rosso, 2017. "Innovative events," Development Working Papers 429, Centro Studi Luca d'Agliano, University of Milano, revised 08 Apr 2019.
    2. Vegard Høghaug Larsen, 2021. "Components Of Uncertainty," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 769-788, May.
    3. Jeremy Atack & Robert A. Margo & Paul Rhode, 2020. "‘Mechanization Takes Command’: Inanimate Power and Labor Productivity in Late Nineteenth Century American Manufacturing," NBER Working Papers 27436, National Bureau of Economic Research, Inc.
    4. Qian Wang & Duowen Wu & Lina Yan, 2021. "Effect of positive tone in MD&A disclosure on capital structure adjustment speed: evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(4), pages 5809-5845, December.
    5. Chris Florackis & Christodoulos Louca & Roni Michaely & Michael Weber, 2023. "Cybersecurity Risk," The Review of Financial Studies, Society for Financial Studies, vol. 36(1), pages 351-407.
    6. Liu, Pu & Nguyen, Hazel T., 2020. "CEO characteristics and tone at the top inconsistency," Journal of Economics and Business, Elsevier, vol. 108(C).
    7. Julia Seiermann, 2018. "Only Words? How Power in Trade Agreement Texts Affects International Trade Flows," UNCTAD Blue Series Papers 80, United Nations Conference on Trade and Development.
    8. Ekaterina Prytkova, 2021. "ICT's Wide Web: a System-Level Analysis of ICT's Industrial Diffusion with Algorithmic Links," Jena Economics Research Papers 2021-005, Friedrich-Schiller-University Jena.
    9. Eghbal Rahimikia & Stefan Zohren & Ser-Huang Poon, 2021. "Realised Volatility Forecasting: Machine Learning via Financial Word Embedding," Papers 2108.00480, arXiv.org, revised Nov 2024.
    10. Daniel Levy & Tamir Mayer & Alon Raviv, 2020. "Academic Scholarship in Light of the 2008 Financial Crisis: Textual Analysis of NBER Working Papers," Working Papers hal-02488796, HAL.
    11. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    12. Elena Fedorova & Nadezhda Lapshina & Mikhail Lazarev & Alexandr Bobrodin, 2021. "Impact of Information in Press Releases on the Financial Performance of Russian Companies [Влияние Информации В Пресс-Релизах На Финансовые Показатели Российских Компаний]," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 3, pages 138-157, June.
    13. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.
    14. Martin Baumgaertner & Johannes Zahner, 2021. "Whatever it takes to understand a central banker - Embedding their words using neural networks," MAGKS Papers on Economics 202130, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    15. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    16. Stelios Michalopoulos & Melanie Meng Xue, 2021. "Folklore," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 136(4), pages 1993-2046.
    17. Julian Freitag & Anna Kerkhof & Johannes Münster, 2021. "Selective sharing of news items and the political position of news outlets," ECONtribute Discussion Papers Series 056, University of Bonn and University of Cologne, Germany.
    18. Diane Coyle & Adam Muhtar, 2022. "You’re not speaking my language - policy discontinuity and coordination gaps between the UK’s national economic strategies and its place-based policies," Working Papers 019, The Productivity Institute.
    19. Bryan Kelly & Dimitris Papanikolaou & Amit Seru & Matt Taddy, 2021. "Measuring Technological Innovation over the Long Run," American Economic Review: Insights, American Economic Association, vol. 3(3), pages 303-320, September.
    20. Arslan-Ayaydin, Özgür & Bishara, Norman & Thewissen, James & Torsin, Wouter, 2020. "Managerial career concerns and the content of corporate disclosures: An analysis of the tone of earnings press releases," International Review of Financial Analysis, Elsevier, vol. 72(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:abc9f83d-960e-40c5-ae40-3845302531de. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.