IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/f131c709-4db4-468d-9ae8-963c71e85d24.html
   My bibliography  Save this paper

On the Harm that Pretesting Does

Author

Listed:
  • Danilov, D.L.

    (Tilburg University, Center For Economic Research)

  • Magnus, J.R.

    (Tilburg University, Center For Economic Research)

Abstract

No abstract is available for this item.

Suggested Citation

  • Danilov, D.L. & Magnus, J.R., 2001. "On the Harm that Pretesting Does," Discussion Paper 2001-37, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:f131c709-4db4-468d-9ae8-963c71e85d24
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/538932/37.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    2. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    3. Zaman, A., 1984. "Avoiding model selection by the use of shrinkage techniques," Journal of Econometrics, Elsevier, vol. 25(1-2), pages 73-85.
    4. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    5. Leeb, Hannes & Pötscher, Benedikt M., 2003. "The Finite-Sample Distribution Of Post-Model-Selection Estimators And Uniform Versus Nonuniform Approximations," Econometric Theory, Cambridge University Press, vol. 19(1), pages 100-142, February.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Lo, Andrew W & MacKinlay, A Craig, 1990. "Data-Snooping Biases in Tests of Financial Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 3(3), pages 431-467.
    8. Lovell, Michael C, 1983. "Data Mining," The Review of Economics and Statistics, MIT Press, vol. 65(1), pages 1-12, February.
    9. Thomson, Michael & Schmidt, Peter, 1982. "A Note on the Comparison of the Mean Square Error of Inequality Constrained Least Squares and Other Related Estimators," The Review of Economics and Statistics, MIT Press, vol. 64(1), pages 174-176, February.
    10. Mittelhammer, R.C., 1984. "Restricted least squares, pre-test, ols and stein rule estimators: Risk comparisons under model misspecification," Journal of Econometrics, Elsevier, vol. 25(1-2), pages 151-164.
    11. Roehrig, C.S., 1984. "Optimal critical regions for pre-test estimators using a Bayes risk criterion," Journal of Econometrics, Elsevier, vol. 25(1-2), pages 3-14.
    12. Giles, Judith A & Giles, David E A, 1993. "Pre-test Estimation and Testing in Econometrics: Recent Developments," Journal of Economic Surveys, Wiley Blackwell, vol. 7(2), pages 145-197, June.
    13. Feldstein, Martin S, 1973. "Multicollinearity and the Mean Square Error of Alternative Estimators," Econometrica, Econometric Society, vol. 41(2), pages 337-346, March.
    14. Judge, G.G. & Bock, M.E., 1983. "Biased estimation," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 10, pages 599-649, Elsevier.
    15. Hendry, David F., 2001. "Achievements and challenges in econometric methodology," Journal of Econometrics, Elsevier, vol. 100(1), pages 7-10, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William E. Griffiths & Duangkamon Chotikapanich & D. S. Prasada Rao, 2005. "Averaging Income Distributions," Bulletin of Economic Research, Wiley Blackwell, vol. 57(4), pages 347-367, October.
    2. Jan R. Magnus & Dmitry Danilov, 2004. "Forecast accuracy after pretesting with an application to the stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(4), pages 251-274.
    3. C. L Chua & W. E. Griffiths & C. J O'Donnell, 2001. "Bayesian Model Averaging in Consumer Demand Systems with Inequality Constraints," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 49(3), pages 269-291, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danilov, Dmitry & Magnus, J.R.Jan R., 2004. "On the harm that ignoring pretesting can cause," Journal of Econometrics, Elsevier, vol. 122(1), pages 27-46, September.
    2. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    3. Todd E. Clark, 2004. "Can out-of-sample forecast comparisons help prevent overfitting?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 115-139.
    4. Todd E. Clark & Michael W. McCracken, 2010. "Reality checks and nested forecast model comparisons," Working Papers 2010-032, Federal Reserve Bank of St. Louis.
    5. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    6. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    7. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    8. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2005. "Testing the significance of calendar effects," FRB Atlanta Working Paper 2005-02, Federal Reserve Bank of Atlanta.
    9. Galor, Oded & Moav, Omer & Vollrath, Dietrich, 2003. "Land Inequality and the Origin of Divergence and Overtaking in the Growth Process: Theory and Evidence," CEPR Discussion Papers 3817, C.E.P.R. Discussion Papers.
    10. Sullivan, Ryan & Timmermann, Allan & White, Halbert, 2003. "Forecast evaluation with shared data sets," International Journal of Forecasting, Elsevier, vol. 19(2), pages 217-227.
    11. Peter Hansen & Asger Lunde, 2003. "Testing the Significance of Calendar Effects," Working Papers 2003-03, Brown University, Department of Economics.
    12. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    13. Chen, Cheng-Wei & Huang, Chin-Sheng & Lai, Hung-Wei, 2009. "The impact of data snooping on the testing of technical analysis: An empirical study of Asian stock markets," Journal of Asian Economics, Elsevier, vol. 20(5), pages 580-591, September.
    14. Wang Pu & Yixiang Chen & Feng Ma, 2016. "Forecasting the realized volatility in the Chinese stock market: further evidence," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3116-3130, July.
    15. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
    16. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    17. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    18. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    19. Köchling, Gerrit & Schmidtke, Philipp & Posch, Peter N., 2020. "Volatility forecasting accuracy for Bitcoin," Economics Letters, Elsevier, vol. 191(C).
    20. Tanya Molodtsova & Alex Nikolsko-Rzhevskyy & David H. Papell, 2011. "Taylor Rules and the Euro," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43, pages 535-552, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:f131c709-4db4-468d-9ae8-963c71e85d24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.