Bayesian Risk Forecasting for Long Horizons
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
- Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2012.
"A class of adaptive importance sampling weighted EM algorithms for efficient and robust posterior and predictive simulation,"
Journal of Econometrics, Elsevier, vol. 171(2), pages 101-120.
- Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2012. "A Class of Adaptive Importance Sampling Weighted EM Algorithms for Efficient and Robust Posterior and Predictive Simulation," Tinbergen Institute Discussion Papers 12-026/4, Tinbergen Institute.
- Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
- Hoogerheide, Lennart & van Dijk, Herman K., 2010.
"Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling,"
International Journal of Forecasting, Elsevier, vol. 26(2), pages 231-247, April.
- Lennart Hoogerheide & Herman K. van Dijk, 2008. "Bayesian Forecasting of Value at Risk and Expected Shortfall using Adaptive Importance Sampling," Tinbergen Institute Discussion Papers 08-092/4, Tinbergen Institute.
- Hoogerheide, Lennart F. & Kaashoek, Johan F. & van Dijk, Herman K., 2007.
"On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks,"
Journal of Econometrics, Elsevier, vol. 139(1), pages 154-180, July.
- HOOGERHEIDE, Lennart F. & KAASHOEK, Johan F. & VAN DIJK, Herman K., 2005. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," LIDAM Discussion Papers CORE 2005029, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- HOOGERHEIDE, Lennart F. & KAASHOEK, Johan F. & van DIJK, Herman K., 2007. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: an application of flexible sampling methods using neural networks," LIDAM Reprints CORE 1922, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hoogerheide, L.F. & Kaashoek, J.F. & van Dijk, H.K., 2005. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: an application of flexible sampling methods using neural networks," Econometric Institute Research Papers EI 2005-12, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- H. Kahn & A. W. Marshall, 1953. "Methods of Reducing Sample Size in Monte Carlo Computations," Operations Research, INFORMS, vol. 1(5), pages 263-278, November.
- McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
- Francis X. Diebold & Andrew Hickman & Atsushi Inoue & Til Schuermann, 1997. "Converting 1-Day Volatility to h-Day Volatitlity: Scaling by Root-h is Worse Than You Think," Center for Financial Institutions Working Papers 97-34, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Borowska, Agnieszka & Hoogerheide, Lennart & Koopman, Siem Jan & van Dijk, Herman K., 2020.
"Partially censored posterior for robust and efficient risk evaluation,"
Journal of Econometrics, Elsevier, vol. 217(2), pages 335-355.
- Agnieszka Borowska & Lennart Hoogerheide & Siem Jan Koopman & Herman K. van Dijk, 2019. "Partially Censored Posterior for robust and efficient risk evaluation," Working Paper 2019/12, Norges Bank.
- Agnieszka Borowska & Lennart Hoogerheide & Siem Jan Koopman & Herman van Dijk, 2019. "Partially Censored Posterior for Robust and Efficient Risk Evaluation," Tinbergen Institute Discussion Papers 19-057/III, Tinbergen Institute.
- Hoogerheide, Lennart & van Dijk, Herman K., 2010.
"Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling,"
International Journal of Forecasting, Elsevier, vol. 26(2), pages 231-247, April.
- Lennart Hoogerheide & Herman K. van Dijk, 2008. "Bayesian Forecasting of Value at Risk and Expected Shortfall using Adaptive Importance Sampling," Tinbergen Institute Discussion Papers 08-092/4, Tinbergen Institute.
- Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2011. "A Class of Adaptive EM-based Importance Sampling Algorithms for Efficient and Robust Posterior and Predictive Simulation," Tinbergen Institute Discussion Papers 11-004/4, Tinbergen Institute.
- Simon Fritzsch & Maike Timphus & Gregor Weiss, 2021. "Marginals Versus Copulas: Which Account For More Model Risk In Multivariate Risk Forecasting?," Papers 2109.10946, arXiv.org.
- Chen, Qian & Gerlach, Richard & Lu, Zudi, 2012. "Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3498-3516.
- Ardia, David & Hoogerheide, Lennart F., 2010.
"Efficient Bayesian estimation and combination of GARCH-type models,"
MPRA Paper
22919, University Library of Munich, Germany.
- David Ardia & Lennart F. Hoogerheide, 2010. "Efficient Bayesian Estimation and Combination of GARCH-Type Models," Tinbergen Institute Discussion Papers 10-046/4, Tinbergen Institute.
- Baştürk, Nalan & Grassi, Stefano & Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2017.
"The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i01).
- Baştürk, N. & Grassi, S. & Hoogerheide, L. & Opschoor, A. & van Dijk, H.K., 2015. "The R package MitISEM : efficient and robust simulation procedures for Bayesian inference," Research Memorandum 011, Maastricht University, Graduate School of Business and Economics (GSBE).
- Nalan Basturk & Stefano Grassi & Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2017. "The R package MitISEM: Efficient and robust simulation procedures for Bayesian inference," Working Paper 2017/10, Norges Bank.
- Nalan Basturk & Stefano Grassi & Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2015. "The R-package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference," Tinbergen Institute Discussion Papers 15-042/III, Tinbergen Institute, revised 04 Jul 2017.
- Aknouche, Abdelhakim & Demmouche, Nacer & Touche, Nassim, 2018. "Bayesian MCMC analysis of periodic asymmetric power GARCH models," MPRA Paper 91136, University Library of Munich, Germany.
- Kavussanos, Manolis G. & Dimitrakopoulos, Dimitris N., 2011. "Market risk model selection and medium-term risk with limited data: Application to ocean tanker freight markets," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 258-268.
- Alexander J. McNeil, 2020. "Modelling volatile time series with v-transforms and copulas," Papers 2002.10135, arXiv.org, revised Jan 2021.
- Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
- Nalan Baştürk & Stefano Grassi & Lennart Hoogerheide & Herman K. Van Dijk, 2016.
"Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM,"
Econometrics, MDPI, vol. 4(1), pages 1-20, March.
- Nalan Basturk & Stefano Grassi & Lennart Hoogerheide & Herman K. van Dijk, 2016. "Parallelization Experience with Four Canonical Econometric Models using ParMitISEM," Tinbergen Institute Discussion Papers 16-005/III, Tinbergen Institute.
- Baştürk, N. & Grassi, S. & Hoogerheide, L. & van Dijk, H.K., 2016. "Parallelization experience with four canonical econometric models using ParMitISEM," Research Memorandum 013, Maastricht University, Graduate School of Business and Economics (GSBE).
- Cao, Yufei, 2022. "Extreme risk spillovers across financial markets under different crises," Economic Modelling, Elsevier, vol. 116(C).
- Geweke, John & Durham, Garland, 2019. "Sequentially adaptive Bayesian learning algorithms for inference and optimization," Journal of Econometrics, Elsevier, vol. 210(1), pages 4-25.
- Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2012.
"A class of adaptive importance sampling weighted EM algorithms for efficient and robust posterior and predictive simulation,"
Journal of Econometrics, Elsevier, vol. 171(2), pages 101-120.
- Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2012. "A Class of Adaptive Importance Sampling Weighted EM Algorithms for Efficient and Robust Posterior and Predictive Simulation," Tinbergen Institute Discussion Papers 12-026/4, Tinbergen Institute.
- Ardia, David & Hoogerheide, Lennart F. & van Dijk, Herman K., 2009.
"Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i03).
- David Ardia & Lennart F. Hoogerheide & Herman K. van Dijk, 2008. "Adaptive Mixture of Student-t distributions as a Flexible Candidate Distribution for Efficient Simulation: the R Package AdMit," Tinbergen Institute Discussion Papers 08-062/4, Tinbergen Institute, revised 15 Dec 2008.
- James, Robert & Leung, Henry & Leung, Jessica Wai Yin & Prokhorov, Artem, 2023. "Forecasting tail risk measures for financial time series: An extreme value approach with covariates," Journal of Empirical Finance, Elsevier, vol. 71(C), pages 29-50.
- Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2014. "VaR performance during the subprime and sovereign debt crises: An application to emerging markets," Emerging Markets Review, Elsevier, vol. 20(C), pages 23-41.
- Ardia, David & Hoogerheide, Lennart F., 2014.
"GARCH models for daily stock returns: Impact of estimation frequency on Value-at-Risk and Expected Shortfall forecasts,"
Economics Letters, Elsevier, vol. 123(2), pages 187-190.
- David Ardia & Lennart Hoogerheide, 2013. "GARCH Models for Daily Stock Returns: Impact of Estimation Frequency on Value-at-Risk and Expected Shortfall Forecasts," Tinbergen Institute Discussion Papers 13-047/III, Tinbergen Institute.
- Ardia, David & Hoogerheide, Lennart F. & van Dijk, Herman K., 2009.
"Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i03).
- David Ardia & Lennart F. Hoogerheide & Herman K. van Dijk, 2008. "Adaptive Mixture of Student-t distributions as a Flexible Candidate Distribution for Efficient Simulation: the R Package AdMit," Tinbergen Institute Discussion Papers 08-062/4, Tinbergen Institute, revised 15 Dec 2008.
- Ardia, David & Hoogerheide, Lennart F. & van Dijk, Herman K., 2008. "Adaptive mixture of Student-t distributions as a flexible candidate distribution for efficient simulation: the R package AdMit," DQE Working Papers 9, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 07 Jan 2009.
More about this item
Keywords
Bayesian inference; forecasting; importance sampling; numerical accuracy; long run risk; Value-at-Risk; Expected Shortfall;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2019-04-22 (Econometrics)
- NEP-FOR-2019-04-22 (Forecasting)
- NEP-RMG-2019-04-22 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20190018. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.