IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20010073.html
   My bibliography  Save this paper

How to overcome the Jeffreys-Lindleys Paradox for Invariant Bayesian Inference in Regression Models

Author

Listed:
  • Frank Kleibergen

    (Universiteit van Amsterdam)

Abstract

We obtain invariant expressions for prior probabilities and priors onthe parameters of nested regression models that are induced by aprior on the parameters of an encompassing linear regression model.The invariance is with respect to specifications that satisfy anecessary set of assumptions. Invariant expressions for posteriorprobabilities and posteriors are induced in an identical way by therespective posterior. These posterior probabilities imply a posteriorodds ratio that is robust to the Jeffreys-Lindleys paradox. Thisresults because the prior odds ratio obtained from the induced priorprobabilities corrects the Bayes factor for the plausibility of thecompeting models reflected in the prior. We illustrate the analysis,where we focus on the construction of specifications that satisfy theset of assumptions, with examples of linear restrictions, i.e. alinear regression model, and non-linear restrictions, i.e. acointegration and ARMA(l,l) model, on the parameters of anencompassing linear regression model.

Suggested Citation

  • Frank Kleibergen, 2001. "How to overcome the Jeffreys-Lindleys Paradox for Invariant Bayesian Inference in Regression Models," Tinbergen Institute Discussion Papers 01-073/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20010073
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/01073.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Dijk, H.K., 2002. "On Bayesian structural inference in a simultaneous equation model," Econometric Institute Research Papers EI 2002-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20010073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.