IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20000027.html
   My bibliography  Save this paper

Bayesian Analysis of ARMA Models

Author

Listed:
  • Frank R. Kleibergen

    (University of Amsterdam)

  • Henk Hoek

    (Vrije Universiteit Amsterdam)

Abstract

Root cancellation in Auto Regressive Moving Average (ARMA) models leads tolocal non-identification of parameters. When we use diffuse or normal priorson the parameters of the ARMA model, posteriors in Bayesian analyzes show ana posteriori favor for this local non-identification. We show that the priorand posterior of the parameters of an ARMA model are the (unique)conditional density of a prior and posterior of the parameters of anencompassing AR model. We can therefore specify priors and posteriors on theparameters of the encompassing AR model and use the prior and posterior thatit implies on the parameters of the ARMA model, and vice versa. Theposteriors of the ARMA parameters that result from standard priors on theparameters of an encompassing AR model do not lead to an a posteriori favorof root cancellation. We develop simulators to generate parameters fromthese priors and posteriors. As a byproduct, Bayes factors can be computedto compare (non-nested) parsimonious ARMA models. The procedures are appliedto the (extended) Nelson-Plosser data. For approximately 50% of the seriesan ARMA model is favored above an AR model.

Suggested Citation

  • Frank R. Kleibergen & Henk Hoek, 2000. "Bayesian Analysis of ARMA Models," Tinbergen Institute Discussion Papers 00-027/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20000027
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/00027.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tripathi Praveen Kumar & Sen Rijji & Upadhyay S. K., 2021. "A Bayes algorithm for model compatibility and comparison of ARMA(p,q) models," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 95-123, June.
    2. Praveen Kumar Tripathi & Rijji Sen & S.K. Upadhyay, 2021. "A Bayes algorithm for model compatibility and comparison of ARMA(p,q) models," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 95-123, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20000027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.