On Classes of Generalized Convex Functions, Farkas-Type Theorems and Lagrangian Duality
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Illés, T. & Kassay, G., 1994. "Farkas type theorems for generalized convexities," Pure Mathematics and Applications, Department of Mathematics, Corvinus University of Budapest, vol. 5(2), pages 225-239.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- T. Illés & G. Kassay, 1999. "Theorems of the Alternative and Optimality Conditions for Convexlike and General Convexlike Programming," Journal of Optimization Theory and Applications, Springer, vol. 101(2), pages 243-257, May.
- R. N. Mukherjee & L. V. Reddy, 1997. "Semicontinuity and Quasiconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 715-726, September.
- E. Carrizosa & J. B. G. Frenk, 1998. "Dominating Sets for Convex Functions with Some Applications," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 281-295, February.
- Giorgio Giorgi, 2014. "Again on the Farkas Theorem and the Tucker Key Theorem Proved Easily," DEM Working Papers Series 094, University of Pavia, Department of Economics and Management.
- J. B. G. Frenk & G. Kassay, 1999. "On Classes of Generalized Convex Functions, Gordan–Farkas Type Theorems, and Lagrangian Duality," Journal of Optimization Theory and Applications, Springer, vol. 102(2), pages 315-343, August.
- Frenk, J. B. G. & Kassay, G. & Kolumban, J., 2004. "On equivalent results in minimax theory," European Journal of Operational Research, Elsevier, vol. 157(1), pages 46-58, August.
- Carrizosa, E. & Frenk, J.B.G., 1996. "Dominating Sets for Convex Functions with some Applications," Econometric Institute Research Papers EI 9657-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- G. Mastroeni & T. Rapcsák, 2000. "On Convex Generalized Systems," Journal of Optimization Theory and Applications, Springer, vol. 104(3), pages 605-627, March.
More about this item
Keywords
Generalized convexity; Farkas-type theorems; Lagrangian duality;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:19970121. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.