IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/19970121.html
   My bibliography  Save this paper

On Classes of Generalized Convex Functions, Farkas-Type Theorems and Lagrangian Duality

Author

Listed:
  • J.B.G. Frenk

    (Erasmus University Rotterdam)

  • G. Kassay

    (Babes-Bolyai University Cluj, Romania)

Abstract

In this paper we introduce several classes of generalized convexfunctions already discussed in the literature and show the relationbetween those function classes. Moreover, for some of those functionclasses a Farkas-type theorem is proved. As such this paper unifiesand extends results existing in the literature and shows how these resultscan be used to verify Farkas-type theorems and strong Lagrangian dualityresults in finite dimensional optimization.

Suggested Citation

  • J.B.G. Frenk & G. Kassay, 1997. "On Classes of Generalized Convex Functions, Farkas-Type Theorems and Lagrangian Duality," Tinbergen Institute Discussion Papers 97-121/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:19970121
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/97121.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Illés, T. & Kassay, G., 1994. "Farkas type theorems for generalized convexities," Pure Mathematics and Applications, Department of Mathematics, Corvinus University of Budapest, vol. 5(2), pages 225-239.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Illés & G. Kassay, 1999. "Theorems of the Alternative and Optimality Conditions for Convexlike and General Convexlike Programming," Journal of Optimization Theory and Applications, Springer, vol. 101(2), pages 243-257, May.
    2. R. N. Mukherjee & L. V. Reddy, 1997. "Semicontinuity and Quasiconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 715-726, September.
    3. E. Carrizosa & J. B. G. Frenk, 1998. "Dominating Sets for Convex Functions with Some Applications," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 281-295, February.
    4. Giorgio Giorgi, 2014. "Again on the Farkas Theorem and the Tucker Key Theorem Proved Easily," DEM Working Papers Series 094, University of Pavia, Department of Economics and Management.
    5. J. B. G. Frenk & G. Kassay, 1999. "On Classes of Generalized Convex Functions, Gordan–Farkas Type Theorems, and Lagrangian Duality," Journal of Optimization Theory and Applications, Springer, vol. 102(2), pages 315-343, August.
    6. Frenk, J. B. G. & Kassay, G. & Kolumban, J., 2004. "On equivalent results in minimax theory," European Journal of Operational Research, Elsevier, vol. 157(1), pages 46-58, August.
    7. Carrizosa, E. & Frenk, J.B.G., 1996. "Dominating Sets for Convex Functions with some Applications," Econometric Institute Research Papers EI 9657-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. G. Mastroeni & T. Rapcsák, 2000. "On Convex Generalized Systems," Journal of Optimization Theory and Applications, Springer, vol. 104(3), pages 605-627, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:19970121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.