IDEAS home Printed from https://ideas.repec.org/p/tik/inowpp/20221001.html
   My bibliography  Save this paper

The role of natural resources in accelerating net-zero transitions: Insights from EV lithium-ion battery Technological Innovation System in China

Author

Listed:
  • Huiwen Gong

    (Department of Environmental Social Science, Eawag, Dübendorf, Switzerland)

  • Allan Dahl Andersen

    (Centre for Technology, Innovation and Culture (TIK), University of Oslo, Norway)

Abstract

As sustainability transitions in some sectors enter an acceleration phase, widespread diffusion of low-carbon technologies seem inevitable. While the availability of critical natural resources will inevitably influence the pace and direction of sustainability transitions, there is as yet little exploration on the role of natural resources in such upscaling and diffusion processes in transition studies. Drawing on the literature on technological innovation systems (TIS), this paper develops an analytical approach to highlight the natural resource dimension in a TIS value chain and link it to TIS dynamics (functional and structural) in the face of inter-sectoral imbalances caused by natural resource scarcity in accelerating transition processes. Empirically we study China's EV battery TIS which shows that a shortage of critical natural resource (especially lithium) has influenced the TIS functional and structural dynamics both within and across sectors and can severely impact transition processes. Overall, we plea for more research on natural resources in transition studies as many low-carbon technologies enter an upscaling and diffusion phase.

Suggested Citation

  • Huiwen Gong & Allan Dahl Andersen, 2022. "The role of natural resources in accelerating net-zero transitions: Insights from EV lithium-ion battery Technological Innovation System in China," Working Papers on Innovation Studies 20221001, Centre for Technology, Innovation and Culture, University of Oslo.
  • Handle: RePEc:tik:inowpp:20221001
    as

    Download full text from publisher

    File URL: http://www.sv.uio.no/tik/InnoWP/tik_working_paper_20221001.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mokyr, Joel, 1992. "The Lever of Riches: Technological Creativity and Economic Progress," OUP Catalogue, Oxford University Press, number 9780195074772.
    2. Stephan, Annegret & Schmidt, Tobias S. & Bening, Catharina R. & Hoffmann, Volker H., 2017. "The sectoral configuration of technological innovation systems: Patterns of knowledge development and diffusion in the lithium-ion battery technology in Japan," Research Policy, Elsevier, vol. 46(4), pages 709-723.
    3. Mäkitie, Tuukka & Hanson, Jens & Steen, Markus & Hansen, Teis & Andersen, Allan Dahl, 2022. "Complementarity formation mechanisms in technology value chains," Research Policy, Elsevier, vol. 51(7).
    4. Nicholas Argyres & Lyda Bigelow, 2010. "Innovation, Modularity, and Vertical Deintegration: Evidence from the Early U.S. Auto Industry," Organization Science, INFORMS, vol. 21(4), pages 842-853, August.
    5. Zhou, Na & Su, Hui & Wu, Qiaosheng & Hu, Shougeng & Xu, Deyi & Yang, Danhui & Cheng, Jinhua, 2022. "China's lithium supply chain: Security dynamics and policy countermeasures," Resources Policy, Elsevier, vol. 78(C).
    6. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    7. Malhotra, Abhishek & Schmidt, Tobias S. & Huenteler, Joern, 2019. "The role of inter-sectoral learning in knowledge development and diffusion: Case studies on three clean energy technologies," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 464-487.
    8. Markard, Jochen & Truffer, Bernhard, 2008. "Technological innovation systems and the multi-level perspective: Towards an integrated framework," Research Policy, Elsevier, vol. 37(4), pages 596-615, May.
    9. Farla, Jacco & Markard, Jochen & Raven, Rob & Coenen, Lars, 2012. "Sustainability transitions in the making: A closer look at actors, strategies and resources," Technological Forecasting and Social Change, Elsevier, vol. 79(6), pages 991-998.
    10. Sandén, Björn A. & Hillman, Karl M., 2011. "A framework for analysis of multi-mode interaction among technologies with examples from the history of alternative transport fuels in Sweden," Research Policy, Elsevier, vol. 40(3), pages 403-414, April.
    11. Helfat, Constance E & Teece, David J, 1987. "Vertical Integration and Risk Reduction," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 3(1), pages 47-67, Spring.
    12. David, Paul A & Wright, Gavin, 1997. "Increasing Returns and the Genesis of American Resource Abundance," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 6(2), pages 203-245, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Huiwen & Andersen, Allan Dahl, 2024. "The role of material resources for rapid technology diffusion in net-zero transitions: Insights from EV lithium-ion battery Technological Innovation System in China," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    2. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    3. Allan Dahl Andersen & Tuukka Mäkitie & Markus Steen & Iris Wanzenböck, 2024. "Integrating industrial transformation and sustainability transitions research through a multi-sectoral perspective," Working Papers on Innovation Studies 20240206, Centre for Technology, Innovation and Culture, University of Oslo.
    4. Mäkitie, Tuukka & Hanson, Jens & Steen, Markus & Hansen, Teis & Andersen, Allan Dahl, 2022. "Complementarity formation mechanisms in technology value chains," Research Policy, Elsevier, vol. 51(7).
    5. Markard, Jochen & Hoffmann, Volker H., 2016. "Analysis of complementarities: Framework and examples from the energy transition," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 63-75.
    6. Rohe, Sebastian & Chlebna, Camilla, 2022. "The evolving role of networking organizations in advanced sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    7. Li, Daitian & Malerba, Franco, 2024. "Technological change and the evolution of the links across sectoral systems: The case of mobile communications," Technovation, Elsevier, vol. 130(C).
    8. Sinsel, Simon R. & Markard, Jochen & Hoffmann, Volker H., 2020. "How deployment policies affect innovation in complementary technologies—evidence from the German energy transition," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    9. Markard, Jochen, 2020. "The life cycle of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    10. De Oliveira, Luiz Gustavo Silva & Negro, Simona O., 2019. "Contextual structures and interaction dynamics in the Brazilian Biogas Innovation System," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 462-481.
    11. Hojckova, Kristina & Ahlborg, Helene & Morrison, Gregory M. & Sandén, Björn, 2020. "Entrepreneurial use of context for technological system creation and expansion: The case of blockchain-based peer-to-peer electricity trading," Research Policy, Elsevier, vol. 49(8).
    12. Allan Dahl Andersen & Jochen Markard, 2017. "Innovating incumbents and technological complementarities: How recent dynamics in the HVDC industry can inform transition theories," Working Papers on Innovation Studies 20170612, Centre for Technology, Innovation and Culture, University of Oslo.
    13. Mirzadeh Phirouzabadi, Amir & Blackmore, Karen & Savage, David & Juniper, James, 2022. "Modelling and simulating a multi-modal and multi-dimensional technology interaction framework: The case of vehicle powertrain technologies in the US market," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    14. Rohe, Sebastian & Oltmer, Marie & Wolter, Hendrik & Gmeiner, Nina & Tschersich , Julia, 2022. "Forever Niche: Why do organic vegetable varieties not diffuse?," Papers in Innovation Studies 2022/8, Lund University, CIRCLE - Centre for Innovation Research.
    15. Erlinghagen, Sabine & Markard, Jochen, 2012. "Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change," Energy Policy, Elsevier, vol. 51(C), pages 895-906.
    16. Constance E. Helfat & Miguel A. Campo-Rembado, 2016. "Integrative Capabilities, Vertical Integration, and Innovation Over Successive Technology Lifecycles," Organization Science, INFORMS, vol. 27(2), pages 249-264, April.
    17. Rohe, Sebastian & Chlebna, Camilla, 2021. "A spatial perspective on the legitimacy of a technological innovation system: Regional differences in onshore wind energy," Energy Policy, Elsevier, vol. 151(C).
    18. Markard, Jochen & Wirth, Steffen & Truffer, Bernhard, 2016. "Institutional dynamics and technology legitimacy – A framework and a case study on biogas technology," Research Policy, Elsevier, vol. 45(1), pages 330-344.
    19. Palm, Alvar, 2022. "Innovation systems for technology diffusion: An analytical framework and two case studies," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    20. Löhr, Meike & Mattes, Jannika, 2022. "Facing transition phase two: Analysing actor strategies in a stagnating acceleration phase," Technological Forecasting and Social Change, Elsevier, vol. 174(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tik:inowpp:20221001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: H&kon Normann (email available below). General contact details of provider: https://edirc.repec.org/data/tkuiono.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.