IDEAS home Printed from https://ideas.repec.org/p/swe/wpaper/2023-05.html
   My bibliography  Save this paper

Synthetic Controls with Multiple Outcomes: Estimating the Effects of Non-Pharmaceutical Interventions in the COVID-19 Pandemic

Author

Listed:
  • Wei Tian

    (School of Economics, UNSW Business School, UNSW)

  • Seojeong Lee

    (Department of Economics, Seoul National University)

  • Valentyn Panchenko

    (School of Economics, UNSW Business School, UNSW)

Abstract

We propose a generalization of the synthetic control method to a multiple-outcome framework, which improves the reliability of treatment effect estimation. This is done by supplementing the conventional pre-treatment time dimension with the extra dimension of related outcomes in computing the synthetic control weights. Our generalization can be particularly useful for studies evaluating the effect of a treatment on multiple outcome variables. To illustrate our method, we estimate the effects of non-pharmaceutical interventions (NPIs) on various outcomes in Sweden in the first 3 quarters of 2020. Our results suggest that if Sweden had implemented stricter NPIs like the other European countries by March, then there would have been about 70% fewer cumulative COVID-19 infection cases and deaths by July, and 20% fewer deaths from all causes in early May, whereas the impacts of the NPIs were relatively mild on the labor market and economic outcomes.

Suggested Citation

  • Wei Tian & Seojeong Lee & Valentyn Panchenko, 2023. "Synthetic Controls with Multiple Outcomes: Estimating the Effects of Non-Pharmaceutical Interventions in the COVID-19 Pandemic," Discussion Papers 2023-05, School of Economics, The University of New South Wales.
  • Handle: RePEc:swe:wpaper:2023-05
    as

    Download full text from publisher

    File URL: http://research.economics.unsw.edu.au/RePEc/papers/2023-05.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Synthetic control; Policy evaluation; Causal inference; Public health;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:swe:wpaper:2023-05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hongyi Li (email available below). General contact details of provider: https://edirc.repec.org/data/senswau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.