IDEAS home Printed from https://ideas.repec.org/p/sol/wpaper/05-006.html
   My bibliography  Save this paper

New insights into the mechanisms of signal formation in RF-spoiled gradient echo sequences

Author

Listed:
  • Céline Azizieh
  • Vincent Denolin
  • Thierry Metens

Abstract

RF spoiling is a well established method to produce T1-weighted images with short repetition time gradient-echo sequences, by eliminating coherent transverse magnetization with appropriate RF phase modulation. This paper presents two novel approaches to describe signal formation in such sequences. Both methods rely on the formulation of RF spoiling as a linear increase of the precession angle between RF pulses, which is an alternative to the commonly used quadratic pulse phase scheme. The first technique demonstrates that a steady state signal can be obtained by integrating over all precession angles within the voxel, in spite of the lack of a genuine steady-state for separate isochromats. This clear mathematical framework allows a straightforward incorporation of offresonance effects and detector phase settings. Moreover, it naturally introduces the need for a large net gradient area per repetition interval. In a second step a modified partition method including RF spoiling is developed to obtain explicit expressions for all signal components. This provides a physical interpretation of the deviations from ideal spoiling behavior in FLASH and echo-shifted sequences. The results of the partition method in the small flip angle regime are compared with numerical simulations based on a Fourier decomposition of magnetization states. Measurements performed with in vitro solutions were in good agreement with numerical simulations at short relaxation times (T1/TR = 32 and T2/TR = 4), larger deviations occurred at long relaxation times (T1/TR =114 and T2/TR = 82).

Suggested Citation

  • Céline Azizieh & Vincent Denolin & Thierry Metens, 2005. "New insights into the mechanisms of signal formation in RF-spoiled gradient echo sequences," Working Papers CEB 05-006.RS, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:sol:wpaper:05-006
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/53905/1/RePEc_sol_wpaper_05-006.pdf
    File Function: RePEc_sol_wpaper_05-006
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    RF Spoiling; signal components.;

    JEL classification:

    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sol:wpaper:05-006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/cebulbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.