IDEAS home Printed from https://ideas.repec.org/p/skb/wpaper/cofie-02-2013.html
   My bibliography  Save this paper

Measure Of Location-Based Estimators In Simple Linear Regression

Author

Listed:
  • DANIEL PREVE

    (City University of Hong Kong)

  • Shu-Ping XIJIA LIU

    (Uppsala University)

Abstract

In this note we consider certain measure of location-based estimators (MLBEs) for the slope parameter in a linear regression model with a single stochastic regressor. The medianunbiased MLBEs are interesting as they can be robust to heavy-tailed samples and, hence, preferable to the ordinary least squares estimator (LSE). Two di erent cases are considered as we investigate the statistical properties of the MLBEs. In the rst case, the regressor and error is assumed to follow a symmetric stable distribution. In the second, other types of regressions, with potentially contaminated errors, are considered. For both cases the consistency and exact nitesample distributions of the MLBEs are established. Some results for the corresponding limiting distributions are also provided. In addition, we illustrate how our results can be extended to include certain heteroskedastic and multiple regressions. Finite-sample properties of the MLBEs in comparison to the LSE are investigated in a simulation study

Suggested Citation

  • DANIEL PREVE & Shu-Ping XIJIA LIU, 2013. "Measure Of Location-Based Estimators In Simple Linear Regression," Working Papers CoFie-02-2013, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
  • Handle: RePEc:skb:wpaper:cofie-02-2013
    as

    Download full text from publisher

    File URL: http://skbi.smu.edu.sg/sites/default/files/skbife/paper_no._cofie-wp-02-2013.pdf
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:skb:wpaper:cofie-02-2013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jaymie Xu (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.