IDEAS home Printed from https://ideas.repec.org/p/siu/wpaper/19-2010.html
   My bibliography  Save this paper

Simulation-based Estimation Methods for Financial Time Series Models

Author

Listed:
  • Jun Yu

    (School of Economics, Singapore Management University)

Abstract

This chapter overviews some recent advances on simulation-based methods of estimating financial time series models that are widely used in financial economics. The simulation-based methods have proven to be particularly useful when the likelihood function and moments do not have tractable forms, and hence, the maximum likelihood (ML) method and the generalized method of moments (GMM) are diffcult to use. They are also capable of improving the finite sample performance of the traditional methods. Both frequentist's and Bayesian simulation-based methods are reviewed. Frequentist's simulation-based methods cover various forms of simulated maximum likelihood (SML) methods, the simulated generalized method of moments (SGMM), the efficient method of moments (EMM), and the indirect inference (II) method. Bayesian simulation-based methods cover various MCMC algorithms. Each simulation-based method is discussed in the context of a specific financial time series model as a motivating example. Empirical applications, based on real exchange rates, interest rates and equity data, illustrate how the simulation-based methods are implemented. In particular, SML is applied to a discrete time stochastic volatility model, EMM to estimate a continuous time stochastic volatility model, MCMC to a credit risk model, the II method to a term structure model.

Suggested Citation

  • Jun Yu, 2010. "Simulation-based Estimation Methods for Financial Time Series Models," Working Papers 19-2010, Singapore Management University, School of Economics.
  • Handle: RePEc:siu:wpaper:19-2010
    as

    Download full text from publisher

    File URL: https://mercury.smu.edu.sg/rsrchpubupload/17837/handbook04.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yacine Aït-Sahalia, 2001. "Transition Densities For Interest Rate And Other Nonlinear Diffusions," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 1, pages 1-34, World Scientific Publishing Co. Pte. Ltd..
    2. Ai[dieresis]t-Sahalia, Yacine & Yu, Jialin, 2006. "Saddlepoint approximations for continuous-time Markov processes," Journal of Econometrics, Elsevier, vol. 134(2), pages 507-551, October.
    3. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    4. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuan-Hsiang Han & Wei-Han Liu & Tzu-Ying Chen, 2014. "VaR/CVaR ESTIMATION UNDER STOCHASTIC VOLATILITY MODELS," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 1-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter C.B.Phillips & Jun Yu, "undated". "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Working Papers CoFie-08-2009, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    2. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    3. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    4. Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
    5. Corradi, Valentina & Swanson, Norman R., 2005. "Bootstrap specification tests for diffusion processes," Journal of Econometrics, Elsevier, vol. 124(1), pages 117-148, January.
    6. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    7. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    8. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    9. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    10. Aït-Sahalia, Yacine & Kimmel, Robert L., 2010. "Estimating affine multifactor term structure models using closed-form likelihood expansions," Journal of Financial Economics, Elsevier, vol. 98(1), pages 113-144, October.
    11. Tao Zou & Song Xi Chen, 2017. "Enhancing Estimation for Interest Rate Diffusion Models With Bond Prices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 486-498, July.
    12. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    13. E. Nicolato & D. Sloth, 2014. "Risk adjustments of option prices under time-changed dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 125-141, January.
    14. Xanthi Pedeli & Anthony C. Davison & Konstantinos Fokianos, 2015. "Likelihood Estimation for the INAR( p ) Model by Saddlepoint Approximation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1229-1238, September.
    15. Peter C.B. Phillips & Jun Yu, 2005. "A Two-Stage Realized Volatility Approach to the Estimation for Diffusion Processes from Discrete Observations," Cowles Foundation Discussion Papers 1523, Cowles Foundation for Research in Economics, Yale University.
    16. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    17. Li, Minqiang, 2013. "An examination of the continuous-time dynamics of international volatility indices amid the recent market turmoil," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 128-139.
    18. Peter C. B. Phillips & Jun Yu, 2009. "Simulation-Based Estimation of Contingent-Claims Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3669-3705, September.
    19. Li, Minqiang & Mercurio, Fabio, 2013. "Closed-Form Approximation of Timer Option Prices under General Stochastic Volatility Models," MPRA Paper 47465, University Library of Munich, Germany.
    20. Jun Yu & Peter C.B. Phillips, 2001. "Gaussian Estimation of Continuous Time Models of the Short Term Interest Rate," Cowles Foundation Discussion Papers 1309, Cowles Foundation for Research in Economics, Yale University.

    More about this item

    Keywords

    Generalized method of moments; Maximum likelihood; MCMC; Indirect Inference; Credit risk; Stock price; Exchange rate; Interest rate..;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:siu:wpaper:19-2010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: QL THor (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.