IDEAS home Printed from https://ideas.repec.org/p/siu/wpaper/13-2010.html
   My bibliography  Save this paper

Estimating the GARCH Diffusion: Simulated Maximum Likelihood in Continuous Time

Author

Listed:
  • Tore Selland Kleppe

    (Department of Mathematics, University of Bergen)

  • Jun Yu

    (School of Economics, Singapore Management University)

  • Hans J. Skaug

    (Department of Mathematics, University of Bergen)

Abstract

A new algorithm is developed to provide a simulated maximum likelihood estimation of the GARCH diffusion model of Nelson (1990) based on return data only. The method combines two accurate approximation procedures, namely, the polynomial expansion of Aït-Sahalia (2008) to approximate the transition probability density of return and volatility, and the Efficient Importance Sampler (EIS) of Richard and Zhang (2007) to integrate out the volatility. The first and second order terms in the polynomial expansion are used to generate a base-line importance density for an EIS algorithm. The higher order terms are included when evaluating the importance weights. Monte Carlo experiments show that the new method works well and the discretization error is well controlled by the polynomial expansion. In the empirical application, we fit the GARCH diffusion to equity data, perform diagnostics on the model fit, and test the finiteness of the importance weights.

Suggested Citation

  • Tore Selland Kleppe & Jun Yu & Hans J. Skaug, 2010. "Estimating the GARCH Diffusion: Simulated Maximum Likelihood in Continuous Time," Working Papers 13-2010, Singapore Management University, School of Economics.
  • Handle: RePEc:siu:wpaper:13-2010
    as

    Download full text from publisher

    File URL: https://mercury.smu.edu.sg/rsrchpubupload/17831/sml_garchdiffusion01.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ai[dieresis]t-Sahalia, Yacine & Yu, Jialin, 2006. "Saddlepoint approximations for continuous-time Markov processes," Journal of Econometrics, Elsevier, vol. 134(2), pages 507-551, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hafner, Christian M. & Laurent, Sebastien & Violante, Francesco, 2017. "Weak Diffusion Limits Of Dynamic Conditional Correlation Models," Econometric Theory, Cambridge University Press, vol. 33(3), pages 691-716, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Nian & Chen, Nan & Wan, Xiangwei, 2019. "A new delta expansion for multivariate diffusions via the Itô-Taylor expansion," Journal of Econometrics, Elsevier, vol. 209(2), pages 256-288.
    2. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    3. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    4. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    5. Glasserman, Paul & Kim, Kyoung-Kuk, 2009. "Saddlepoint approximations for affine jump-diffusion models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 15-36, January.
    6. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    7. Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
    8. Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
    9. Mengzhe Zhang & Leunglung Chan, 2016. "Pricing volatility swaps in the Heston’s stochastic volatility model with regime switching: A saddlepoint approximation method," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-20, December.
    10. Takashi Kato & Jun Sekine & Kenichi Yoshikawa, 2013. "Order Estimates for the Exact Lugannani-Rice Expansion," Papers 1310.3347, arXiv.org, revised Jun 2014.
    11. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    12. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    13. Chiara Amorino & Arnaud Gloter, 2020. "Contrast function estimation for the drift parameter of ergodic jump diffusion process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 279-346, June.
    14. A. C. Davison & S. Hautphenne & A. Kraus, 2021. "Parameter estimation for discretely observed linear birth‐and‐death processes," Biometrics, The International Biometric Society, vol. 77(1), pages 186-196, March.
    15. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    16. Martin Biehler & Heinz Holling & Philipp Doebler, 2015. "Saddlepoint Approximations of the Distribution of the Person Parameter in the Two Parameter Logistic Model," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 665-688, September.
    17. E. Nicolato & D. Sloth, 2014. "Risk adjustments of option prices under time-changed dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 125-141, January.
    18. Xanthi Pedeli & Anthony C. Davison & Konstantinos Fokianos, 2015. "Likelihood Estimation for the INAR( p ) Model by Saddlepoint Approximation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1229-1238, September.
    19. La Vecchia, Davide & Trojani, Fabio, 2010. "Infinitesimal Robustness for Diffusions," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 703-712.
    20. Lars Josef Hook & Erik Lindstrom, 2015. "Efficient Computation of the Quasi Likelihood function for Discretely Observed Diffusion Processes," Papers 1509.07751, arXiv.org.

    More about this item

    Keywords

    Ecient importance sampling; GARCH diusion model; Simulated Maximum likelihood; Stochastic volatility;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:siu:wpaper:13-2010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: QL THor (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.