IDEAS home Printed from https://ideas.repec.org/p/siu/wpaper/12-2010.html
   My bibliography  Save this paper

Bias-Corrected Estimation for Spatial Autocorrelation

Author

Listed:
  • Zhenlin Yang

    (School of Economics, Singapore Management University)

Abstract

The biasedness issue arising from the maximum likelihood estimation of the spatial autoregressive model (SAR) is further investigated under a broader set-up than that in Bao and Ullah (2007a). A major difficulty in analytically evaluating the expectations of ratios of quadratic forms is overcome by a simple bootstrap procedure. With that, the corrections on bias and variance of the spatial estimator can easily be made up to third-order, and once this is done, the estimators of other model parameters become nearly unbiased. Compared with the analytical approach, the new approach is much simpler, and can easily be extended to other models of a similar structure. Extensive Monte Carlo results show that the new approach performs excellently in general.

Suggested Citation

  • Zhenlin Yang, 2010. "Bias-Corrected Estimation for Spatial Autocorrelation," Working Papers 12-2010, Singapore Management University, School of Economics.
  • Handle: RePEc:siu:wpaper:12-2010
    as

    Download full text from publisher

    File URL: https://mercury.smu.edu.sg/rsrchpubupload/17434/ZLYangOct10.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Zhenlin, 2015. "A general method for third-order bias and variance corrections on a nonlinear estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 178-200.

    More about this item

    Keywords

    Third-order bias; Third-order variance; Bootstrap; Concentrated estimating equation; Monte Carlo; Quasi-MLE; Spatial layout.;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:siu:wpaper:12-2010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: QL THor (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.