IDEAS home Printed from https://ideas.repec.org/p/siu/wpaper/05-2016.html
   My bibliography  Save this paper

Estimation of Large Dimensional Factor Models with an Unknown Number of Breaks

Author

Listed:
  • Shujie Ma

    (Department of Statistics, University of California, Riverside)

  • Liangjun Su

    (Singapore Management University)

Abstract

In this paper we study the estimation of a large dimensional factor model when the factor loadings exhibit an unknown number of changes over time. We propose a novel three-step procedure to detect the breaks if any and then identify their locations. In the first step, we divide the whole time span into subintervals and fit a conventional factor model on each interval. In the second step, we apply the adaptive fused group Lasso to identify intervals containing a break. In the third step, we devise a grid search method to estimate the location of the break on each identified interval. We show that with probability approaching one our method can identify the correct number of changes and estimate the break locations. Simulation studies indicate superb finite sample performance of our method. We apply our method to investigate Stock and Watson’s (2009) U.S. monthly macroeconomic data set and identify five breaks in the factor loadings, spanning 1959-2006.

Suggested Citation

  • Shujie Ma & Liangjun Su, 2016. "Estimation of Large Dimensional Factor Models with an Unknown Number of Breaks," Working Papers 05-2016, Singapore Management University, School of Economics.
  • Handle: RePEc:siu:wpaper:05-2016
    as

    Download full text from publisher

    File URL: http://ink.library.smu.edu.sg/soe_research/1789
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018. "Simultaneous multiple change-point and factor analysis for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 206(1), pages 187-225.

    More about this item

    Keywords

    Break point; Convergence rate; Factor model; Fused Lasso; Group Lasso; Information criterion; Principal component; Structural change; Super-consistency; Time-varying parameter.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:siu:wpaper:05-2016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: QL THor (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.