IDEAS home Printed from https://ideas.repec.org/p/sin/wpaper/16-a010.html
   My bibliography  Save this paper

Multiplier Bootstrap for Empirical Processes

Author

Abstract

Multiplier bootstrap (MB) has been used to approximate the limiting processes of empirical processes in various papers. In this paper, we consider multiplier bootstrap in three cases. First, we consider MB for standard empirical process. Second, we extend the MB to account for estimation effects of the pre-estimated parameters or unknown nonparametric functions. Last, we consider MB for Nadaraya-Waston nonparametric kernel estimators. JEL Classification: C01, C15

Suggested Citation

  • Yu-Chin Hsu, 2016. "Multiplier Bootstrap for Empirical Processes," IEAS Working Paper : academic research 16-A010, Institute of Economics, Academia Sinica, Taipei, Taiwan.
  • Handle: RePEc:sin:wpaper:16-a010
    as

    Download full text from publisher

    File URL: https://www.econ.sinica.edu.tw/~econ/pdfPaper/16-A010.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoichi Arai & Yu‐Chin Hsu & Toru Kitagawa & Ismael Mourifié & Yuanyuan Wan, 2022. "Testing identifying assumptions in fuzzy regression discontinuity designs," Quantitative Economics, Econometric Society, vol. 13(1), pages 1-28, January.
    2. Ying-Ying Lee, 2018. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Papers 1811.00157, arXiv.org.
    3. Hsu, Yu-Chin & Shen, Shu, 2019. "Testing treatment effect heterogeneity in regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 208(2), pages 468-486.

    More about this item

    Keywords

    Empirical Process; Multiplier Bootstrap; Nonparametric Estimator;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sin:wpaper:16-a010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: HsiaoyunLiu (email available below). General contact details of provider: https://edirc.repec.org/data/sinictw.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.