IDEAS home Printed from https://ideas.repec.org/p/sek/iacpro/6409199.html
   My bibliography  Save this paper

Comparative Study of Three Time Series Methods in Forecasting Dengue Hemorrhagic Fever Incidence in Thailand

Author

Listed:
  • Somsri Banditvilai

    (King Mongkut's Institute of Technology Ladkrabang)

  • Siriluck Anansatitzin

    (King Mongkut's Institute of Technology Ladkrabang)

Abstract

Accurate incidence forecasting of infectious disease such as dengue hemorrhagic fever is critical for early prevention and detection of outbreaks. This research presents a comparative study of three different forecasting methods based on the monthly incidence of dengue hemorrhagic fever. Holt and Winters method, Box-Jenkins method and Artificial Neural Networks were compared. The data were taken from the Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health starting from January, 2003 to December, 2016. The data were divided into 2 sets. The first set from January, 2003 to December, 2015 were used for constructing and selection the forecasting models. The second set from January, 2016 to December, 2016 were used for computing the accuracy of the forecasting model. The forecasting models were chosen by considering the smallest root mean square error (RMSE) and mean absolute percentage error (MAPE) were used to measure the accuracy of the model. The results showed that Artificial Neural Networks obtained the smallest RMSE in the modeling process and the MAPE in the forecasting process was 14.05%

Suggested Citation

  • Somsri Banditvilai & Siriluck Anansatitzin, 2018. "Comparative Study of Three Time Series Methods in Forecasting Dengue Hemorrhagic Fever Incidence in Thailand," Proceedings of International Academic Conferences 6409199, International Institute of Social and Economic Sciences.
  • Handle: RePEc:sek:iacpro:6409199
    as

    Download full text from publisher

    File URL: https://iises.net/proceedings/35th-international-academic-conference-barcelona-spain/table-of-content/detail?cid=64&iid=007&rid=9199
    File Function: First version, 2018
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Dengue hemorrhagic fever; Time Series Forecasting; Holt-Winters method; Box-Jenkins method; Artificial Neural Networks;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sek:iacpro:6409199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klara Cermakova (email available below). General contact details of provider: https://iises.net/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.