IDEAS home Printed from https://ideas.repec.org/p/sek/iacpro/0901514.html
   My bibliography  Save this paper

Predicting a future observation: A reconciliation of the Bayesian and frequentist approaches

Author

Listed:
  • Rahul Mukherjee

    (Indian Institute of Management Calcutta)

Abstract

Predicting a future observation on the basis of the existing observations is a problem of compelling practical interest in many fields of study including economics and sociology. Bayesian predictive densities, obtained via a prior specification on the underlying population, are commonly used for this purpose. This may, however, induce subjectivity because the resulting predictive set depends on the choice of prior. Moreover, one can as well consider direct frequentist methods which do not require any prior specification. This can again entail results differing from what Bayesian predictive densities yield. Thus there is a need to reconcile all these approaches.The present article aims at addressing this problem. Specifically, we explore predictive sets which have frequentist as well as Bayesian validity for arbitrary priors in an asymptotic sense. Our tools include a connection with locally unbiased tests and a shrinkage argument for Bayesian asymptotics. Our findings apply to general multiparameter statistical models and represent a significant advance over the existing work in this area which caters only to models with a single unknown parameter and that too under certain restrictions. Illustrative examples are given. Computation and simulation studies show that our results work very well in finite samples.

Suggested Citation

  • Rahul Mukherjee, 2014. "Predicting a future observation: A reconciliation of the Bayesian and frequentist approaches," Proceedings of International Academic Conferences 0901514, International Institute of Social and Economic Sciences.
  • Handle: RePEc:sek:iacpro:0901514
    as

    Download full text from publisher

    File URL: https://iises.net/proceedings/14th-international-academic-conference-malta/table-of-content/detail?cid=9&iid=54&rid=1514
    File Function: First version, 2014
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Asymptotic theory; locally unbiased test; posterior predictive density; shrinkage argument;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sek:iacpro:0901514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klara Cermakova (email available below). General contact details of provider: https://iises.net/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.