IDEAS home Printed from https://ideas.repec.org/p/sek/iacpro/0201599.html
   My bibliography  Save this paper

Forecasting The Runoff Data Using Adaptive Neuro Fuzzy Inference Systems (ANFIS)

Author

Listed:
  • Alpaslan YARAR

    (Selcuk University)

  • Mustafa ONÜÇYILDIZ

    (Selcuk University)

  • Nuri PEKÇET?N

    (Metropolitan Municipility of Adana)

Abstract

To development and management of the water resources, fluctuations over the amount of water resources should be determined. Fluctuations depend on the rainfall, runoff, geological, meteorological properties of the area and many others. Scientist studied to determine this process using physical models. But, in recent years Adaptive Neuro Fuzzy Inference System (ANFIS) has being widely used. Even absence of some data to determine these hydrological processes, ANFIS model can be used efficiently. Many data-driven models, including linear, nonparametric or nonlinear approaches, are developed for hydrologic discharge time series prediction in the past decades (Marques et al., 2006). Generally, the prediction techniques for a dynamic system can be roughly divided into two approaches: local and global. Local approach uses only nearby states to make predictions whereas global approach involves all the states. K-Nearest-Neighbors (KNN) algorithm, Artificial Neural Networks (ANN) and Support Vectors Machine (SVM) are some typical forecast methods for dynamic systems (Sivapragasam et al., 2001; Laio et al., 2003; Wang et al., 2006). Kazeminezhad et al. (2005) used an adaptive network-based fuzzy inference systems (ANFIS) model, which is a fuzzy inference system, whose rules parameters are tuned by ANNs, in prediction of wave parameters in fetch-limited condition. Zanganeh et al. (2006) combined GAs and ANFIS models in the problem of prediction of wave parameters.In this study, 5 Flow Observation Station (FOS) in the West Mediterranean Basin in Turkey was modeled to forecast the monthly flow data using ANFIS. It was seen that ANFIS model can be used to forecast the monthly flow efficiently.

Suggested Citation

  • Alpaslan YARAR & Mustafa ONÜÇYILDIZ & Nuri PEKÇET?N, 2014. "Forecasting The Runoff Data Using Adaptive Neuro Fuzzy Inference Systems (ANFIS)," Proceedings of International Academic Conferences 0201599, International Institute of Social and Economic Sciences.
  • Handle: RePEc:sek:iacpro:0201599
    as

    Download full text from publisher

    File URL: https://iises.net/proceedings/10th-international-academic-conference-vienna/table-of-content/detail?cid=2&iid=108&rid=1599
    File Function: First version, 2014
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Forecasting ; Runoff; ANFIS;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sek:iacpro:0201599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klara Cermakova (email available below). General contact details of provider: https://iises.net/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.