IDEAS home Printed from https://ideas.repec.org/p/sce/scecfa/459.html
   My bibliography  Save this paper

New Dimensions in Portfolio Optimization

Author

Listed:
  • S. Nagornii

    (QuantInvest BV)

  • D. Widijanto

    (BNG Capital Management)

Abstract

In a traditional mean-variance approach a portfolio is represented by the allocation vector optimized in terms of expected returns and variances. Basic assumption is that the allocation vector may only be the driver of a portfolio risk-reward trade-off, while all constituent assets are fully specified by constant expected returns and variances. It is not the case, however, for fixed income asset classes, or any assets whose risk-return profile may be a functional of external time-dependent factors. We show that the allocation problem on asset classes level cannot be complete without risk-sensitivities dimensions, as the allocation vector cannot fully specify the portfolio. The proposed approach is a generalization of the allocation problem when assets expected returns and variances might be driven by arbitrary exposures in multiple risk-dimensions. Those risk exposures may depend on investment policies, risk strategies, tactical views, etc. The expansion of the optimization space by the strategy specified risk-dimensions leads to a multi-dimensional mean-variance efficient surface, the efficient hyper-frontier. The analytical solution of multi-dimensional optimization problem is found as a function of the risk-sensitivity matrix. The dependence of optimal allocation decisions on asset sensitivities to interest rates, investment policies and risk strategies is analyzed. Practical implications for the tactical and strategic asset allocations are considered.

Suggested Citation

  • S. Nagornii & D. Widijanto, 2006. "New Dimensions in Portfolio Optimization," Computing in Economics and Finance 2006 459, Society for Computational Economics.
  • Handle: RePEc:sce:scecfa:459
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    Portfolio Optimization; Asset Allocation; Efficient Frontier; Risk Sensitivity; Fixed Income;
    All these keywords.

    JEL classification:

    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.