IDEAS home Printed from https://ideas.repec.org/p/sce/scecfa/44.html
   My bibliography  Save this paper

Pricing American Options under Stochastic Volatility and Jump Diffusion Dynamics

Author

Listed:
  • Carl Chiarella

    (School of Finance and Economics University of Technology, Sydney)

  • Andrew Ziogas

    (University of Technology, Sydney)

Abstract

This paper considers the problem of pricing American options when the dynamics of the underlying are driven both by stochastic volatility following a square root process as used by Heston (1993) and by a Poisson jump process as introduced by Merton (1976). The two-factor homogeneous integro-partial differential equation for the price and early exercise surface is cast into an in-homogeneous form accord- ing to the approach introduced by Jamshidian (1992). The Fourier transform is then applied to find the solution, which generalizes in an obvious way the structure of the solution to the corresponding European option pricing problem in the case of a call option and constant interest rates obtained by Scott (1997). The price is given by an integral equation dependent upon the early exercise surface, for which a correspond- ing integral equation is obtained. An algorithm is proposed for solving the integral equation system. The method is implemented, and the resulting prices and deltas are compared with the constant volatility model. The computational efficiency of the nu- merical integration scheme is also considered by comparing with benchmark solutions obtained by a finite difference method and the method of lines applied directly to the integro-partial differential equation

Suggested Citation

  • Carl Chiarella & Andrew Ziogas, 2006. "Pricing American Options under Stochastic Volatility and Jump Diffusion Dynamics," Computing in Economics and Finance 2006 44, Society for Computational Economics.
  • Handle: RePEc:sce:scecfa:44
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    optioin pricing; American options; jump-diffusion processes;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.