IDEAS home Printed from https://ideas.repec.org/p/sce/scecfa/435.html
   My bibliography  Save this paper

A Karush-Kuhn-Tucker test of convexity for univariate observations

Author

Listed:
  • Sofia Georgiadou

    (University of Athens)

  • Ioannis C. Demetriou

    (University of Athens)

Abstract

The problem of convexity runs deeply in economic theory. For example, increasing returns or upward slopes (convexity) and diminishing returns or downward slopes (concavity) of certain supply, demand, production and utility relations are often assumed in economics. Quite frequently, however, the observations have lost convexity (or concavity) due to errors of the measuring process. We derive the Karush-Kuhn-Tucker test statistic of convexity, when the estimator of the data minimizes the sum of squares of residuals subject to the assumption of non-decreasing returns. It is a highly structured quadratic programming problem that allows a very efficient calculation of the test statistic. Certain applications that test the convexity assumption of real economic data are considered and the interpretation capability of the test is demonstrated. Some numerical results illustrate the computation and present the efficacy of the test in small, medium and large data sets. They suggest that the test is suitable when the number of observations is very large

Suggested Citation

  • Sofia Georgiadou & Ioannis C. Demetriou, 2006. "A Karush-Kuhn-Tucker test of convexity for univariate observations," Computing in Economics and Finance 2006 435, Society for Computational Economics.
  • Handle: RePEc:sce:scecfa:435
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    convexity; data fitting; diminishing return; least squares;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.