IDEAS home Printed from https://ideas.repec.org/p/sce/scecfa/317.html
   My bibliography  Save this paper

Applications of Kernel Methods in Financial Risk Management

Author

Listed:
  • Andreas Mitschele

    (Institute AIFB University of Karlsruhe (TH), Germany)

  • Stephan Chalup

    (University of Newcastle, Australia)

  • Frank Schlottmann

    (GILLARDON AG financial software, Bretten, Germany)

  • Detlef Seese

    (Institute AIFB University of Karlsruhe (TH), Germany)

Abstract

Since their introduction Kernel Methods have proven their superior performance in many different application areas. Recently these algorithms have also been employed for different tasks in the area of finance. In this contribution we present an introduction to the methodology and give an overview of successful applications in finance. Subsequently two promising areas for the use of these advanced statistical learning methods are introduced, namely integrated risk management and parameter estimation in the Basel II capital accord context. Integrated risk management is concerned with the simultaneous consideration of the major sources of risk and return for today’s financial institutions. While risk measurement is typically still performed using isolated and substantially different quantitative models per risk category, we describe a novel approach based on Support Vector Machines (SVMs). Through training the SVM learns the implicit relation between different risk types. The Loss Given Default (LGD) represents a parameter to be estimated by banks when using internal rating based approaches within their Basel II implementation. Real-world applications indicate that linear relations between the input values may fail to describe the parameter output. We have used SVMs with varying kernels and obtained rather reliable estimates for the LGD compared to standard methods

Suggested Citation

  • Andreas Mitschele & Stephan Chalup & Frank Schlottmann & Detlef Seese, 2006. "Applications of Kernel Methods in Financial Risk Management," Computing in Economics and Finance 2006 317, Society for Computational Economics.
  • Handle: RePEc:sce:scecfa:317
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    financial risk management; Basel II; parameter estimation; kernel methods; support vector machines;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.