IDEAS home Printed from https://ideas.repec.org/p/sce/scecfa/271.html
   My bibliography  Save this paper

Forecasting VARMA processes: VAR models vs. subspace-based state space models

Author

Listed:
  • Segismundo Izquierdo

    (University of Valladolid)

  • Cesareo Hernandez

    (University of Valladolid)

  • Juan del Hoyo

    (University of Valladolid)

Abstract

VAR modelling is a frequent technique in econometrics for assumed linear processes. VAR modelling offers some desirable features such as relatively simple procedures for model specification and the possibility of making a quick and non-iterative maximum likelihood estimation of the system parameters. However, if the process under study follows a finite-order VARMA structure, it cannot be equivalently represented by any finite-order VAR model. On the other hand, a finite-order state space model can represent a finite-order VARMA process exactly, and subspace algorithms allow for a simple specification and quick non-iterative estimates. Given the previous facts, we test in this paper whether subspace-based state space models can provide better forecasts than VAR models when working with VARMA data generating processes. In a simulation study we generate identification samples from different VARMA data generating processes, obtain VAR-based and state-space-based models for each generating process and compare the predictive power of the obtained models. We also conduct a practical comparison (for two cointegrated economic time series) of the predictive power of Johansen restricted-VAR (VEC) models with the predictive power of state space models obtained by the CCA subspace algorithm, including a density forecasting analysis

Suggested Citation

  • Segismundo Izquierdo & Cesareo Hernandez & Juan del Hoyo, 2006. "Forecasting VARMA processes: VAR models vs. subspace-based state space models," Computing in Economics and Finance 2006 271, Society for Computational Economics.
  • Handle: RePEc:sce:scecfa:271
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    Forecasting; time series; subspace models;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.