IDEAS home Printed from https://ideas.repec.org/p/sce/scecfa/215.html
   My bibliography  Save this paper

Recovering from Crash States: A ''New'' Algorithm for Solving Dynamic Stochastic Macroeconomic Models

Author

Listed:
  • Viktor Dorofeenko

    (IHS)

  • Gabriel S. Lee

    (University of Regensburg and IHS)

  • Kevin D. Salyer

    (UC Davis)

Abstract

We introduce a ''new'' algorithm that can be used to solve stochastic dynamic general equilibrium models. This approach exploits the fact that the equations defining equilibrium can be viewed as set of algebraic equations in the neighborhood of the steady-state. Then a recursive scheme, which employes Upwind Gauss Seidel method at each step of iteration, can be used to determine the global solution. This method, within the context of a standard real business cycle model, is compared to projection, perturbation, and linearization approaches and is shown to be fast and globally accurate. Furthermore, we show that the gain in efficiency becomes more significant if the number of discrete states of the problem grows, and hence the method allows us to avoid the state space limitation. This comparison is done within a discrete state setting in which there is a low probability, crash state for the technology shock. Critically, this environment introduces heteroscedasticity in the technology shock and we show that linearization methods perform poorly in this environment even though the unconditional variance of shocks is relatively small and similar to that typically used in RBC analysis. We then use this solution method to analyze the equilibrium behavior of the crash state economy. We demonstrate that the welfare costs of a crash state are high and lead to a larger average capital stock due to precautionary savings. Also, we analyze the behavior of the term premia (both conditional and unconditional) and demonstrate how these affect the business cycle characteristics of the yield curve

Suggested Citation

  • Viktor Dorofeenko & Gabriel S. Lee & Kevin D. Salyer, 2006. "Recovering from Crash States: A ''New'' Algorithm for Solving Dynamic Stochastic Macroeconomic Models," Computing in Economics and Finance 2006 215, Society for Computational Economics.
  • Handle: RePEc:sce:scecfa:215
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    numerical methods; Gauss Seidel method ; projection methods; real business cycles; crash state;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.