IDEAS home Printed from https://ideas.repec.org/p/sce/scecfa/137.html
   My bibliography  Save this paper

Numerical Methods for American Spread Options under Jump Diffusion Processes

Author

Listed:
  • Finance, University of Technology, Sydney,; Gunter Meyer, School of Mathematics, Georgia Institute of Technology,; Andrew Ziogas, School of Economics

    (Gerald H. L. Cheang)

  • Gerald H. L. Cheang

    (Nanyang Business School, Nanyang Technological University)

  • Carl Chiarella

    (School of Economics and Finance, University of Technology, Sydney)

  • Gunter Meyer

    (School of Mathematics, Georgia Institute of Technology)

  • Andrew Ziogas

    (School of Economics and Finance, University of Technology, Sydney)

Abstract

This paper examines two numerical methods for pricing of American spread options in the case where both underlying assets follow the jump-diffusion process of Merton (1976). We extend the integral equation representation for the American spread option presented by Broadie and Detemple (1997) to the case where the return dynamics for both underlying assets involve jump terms. By use of the Fourier transform method, we derive a linked system of integral equations for the price and early exercise boundary of the American spread option. We also provide an integral equation for the delta of the American spread option, and determine the limit of the early exercise surface as time to expiry tends to zero. We consider two numerical methods for computing the price, delta and early exercise boundary of the American spread option. The first method is a two-dimensional generalisation of the method of lines for jump-diffusion, extending on the algorithm of Meyer (1998). The second method involves a numerical integration scheme for Volterra integral equations. This algorithm extends the methods of Kallast and Kivinukk (2003) and Chiarella and Ziogas (2004) to the two-dimensional jump-diffusion setting. The methods are benchmarked against a suitable Crank-Nicolson finite difference scheme, and their efficiency is explored.

Suggested Citation

  • Finance, University of Technology, Sydney,; Gunter Meyer, School of Mathematics, Georgia Institute of Technology,; Andrew Ziogas, School of Economics & Gerald H. L. Cheang & Carl Chiarella & Gunter Me, 2006. "Numerical Methods for American Spread Options under Jump Diffusion Processes," Computing in Economics and Finance 2006 137, Society for Computational Economics.
  • Handle: RePEc:sce:scecfa:137
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    American options; spread option; jump-diffusion; Volterra integral equation; free boundary problem; Fourier transform; method of lines;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.