IDEAS home Printed from https://ideas.repec.org/p/sce/scecf9/144.html
   My bibliography  Save this paper

Stochastic Simulations of a Non-Linear Phillips Curve Model

Author

Listed:
  • Michel Juillard

    (University Paris VIII and CEPREMAP)

  • Fabrice Collard

    (CEPREMAP)

Abstract

This paper presents stochastic simulations of a non-linear Phillips curve model with a random shock on the labor market, a random shock on inflation, and 20 state variables to represent a rather complex dynamical adjustment. Various methods are used to perform the simulations: two approaches to parameterized-expectations and a high-order Taylor expansion. The effects of non-linearity are then evaluated by a comparison with a linearized version of the model.

Suggested Citation

  • Michel Juillard & Fabrice Collard, 1999. "Stochastic Simulations of a Non-Linear Phillips Curve Model," Computing in Economics and Finance 1999 144, Society for Computational Economics.
  • Handle: RePEc:sce:scecf9:144
    as

    Download full text from publisher

    File URL: http://www.cepremap.cnrs.fr/~michel/feb99/coljui.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McGrattan, Ellen R., 1996. "Solving the stochastic growth model with a finite element method," Journal of Economic Dynamics and Control, Elsevier, vol. 20(1-3), pages 19-42.
    2. Christiano, Lawrence J. & Fisher, Jonas D. M., 2000. "Algorithms for solving dynamic models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1179-1232, July.
    3. den Haan, Wouter J & Marcet, Albert, 1990. "Solving the Stochastic Growth Model by Parameterizing Expectations," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 31-34, January.
    4. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christiano, Lawrence J. & Fisher, Jonas D. M., 2000. "Algorithms for solving dynamic models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1179-1232, July.
    2. Pontus Rendahl, 2015. "Inequality Constraints and Euler Equation‐based Solution Methods," Economic Journal, Royal Economic Society, vol. 125(585), pages 1110-1135, June.
    3. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    4. José Cao-Alvira, 2012. "Velocity Volatility Assessment of Monetary Shocks on Cash-in-Advance Economies," Computational Economics, Springer;Society for Computational Economics, vol. 40(3), pages 293-311, October.
    5. repec:hal:spmain:info:hdl:2441/8845 is not listed on IDEAS
    6. Jae Sim & Simon Gilchrist, 2007. "Investment during the Korean financial crisis: A structural econometric approach," 2007 Meeting Papers 53, Society for Economic Dynamics.
    7. Guerrieri, Luca & Iacoviello, Matteo, 2015. "OccBin: A toolkit for solving dynamic models with occasionally binding constraints easily," Journal of Monetary Economics, Elsevier, vol. 70(C), pages 22-38.
    8. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2014. "Lower Bounds on Approximation Errors: Testing the Hypothesis That a Numerical Solution Is Accurate?," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-06, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    9. Hull, Isaiah, 2015. "Approximate dynamic programming with post-decision states as a solution method for dynamic economic models," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 57-70.
    10. Algan, Yann & Allais, Olivier & Den Haan, Wouter J., 2008. "Solving heterogeneous-agent models with parameterized cross-sectional distributions," Journal of Economic Dynamics and Control, Elsevier, vol. 32(3), pages 875-908, March.
    11. repec:hal:wpspec:info:hdl:2441/8823 is not listed on IDEAS
    12. Serguei Maliar & John Taylor & Lilia Maliar, 2016. "The Impact of Alternative Transitions to Normalized Monetary Policy," 2016 Meeting Papers 794, Society for Economic Dynamics.
    13. José Cao-Alvira, 2010. "Finite Elements in the Presence of Occasionally Binding Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 35(4), pages 355-370, April.
    14. Almuth Scholl, 2009. "Aid Effectiveness and Limited Enforceable Conditionality," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(2), pages 377-391, April.
    15. Michel Juillard & Tarik Ocaktan, 2008. "Méthodes de simulation des modèles stochastiques d'équilibre général," Economie & Prévision, La Documentation Française, vol. 0(2), pages 115-126.
    16. Algan, Yann & Allais, Olivier & Den Haan, Wouter J., 2008. "Solving heterogeneous-agent models with parameterized cross-sectional distributions," Journal of Economic Dynamics and Control, Elsevier, vol. 32(3), pages 875-908, March.
    17. Maliar, Serguei & Maliar, Lilia & Judd, Kenneth, 2011. "Solving the multi-country real business cycle model using ergodic set methods," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 207-228, February.
    18. Ayşe Kabukçuoğlu & Enrique Martínez-García, 2021. "A Generalized Time Iteration Method for Solving Dynamic Optimization Problems with Occasionally Binding Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 435-460, August.
    19. Simon Gilchrist & Jae W. Sim, 2007. "Investment during the Korean Financial Crisis: A Structural Econometric Analysis," NBER Working Papers 13315, National Bureau of Economic Research, Inc.
    20. Duffy, John & McNelis, Paul D., 2001. "Approximating and simulating the stochastic growth model: Parameterized expectations, neural networks, and the genetic algorithm," Journal of Economic Dynamics and Control, Elsevier, vol. 25(9), pages 1273-1303, September.
    21. repec:hum:wpaper:sfb649dp2005-054 is not listed on IDEAS
    22. Yasuo Hirose & Takeki Sunakawa, 2019. "Review of Solution and Estimation Methods for Nonlinear Dynamic Stochastic General Equilibrium Models with the Zero Lower Bound," The Japanese Economic Review, Springer, vol. 70(1), pages 51-104, March.
    23. Kenneth Judd & Lilia Maliar & Serguei Maliar, 2009. "Numerically Stable Stochastic Simulation Approaches for Solving Dynamic Economic Models," NBER Working Papers 15296, National Bureau of Economic Research, Inc.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf9:144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.