IDEAS home Printed from https://ideas.repec.org/p/sce/scecf6/_064.html
   My bibliography  Save this paper

Risk and Return in a Dynamic Asset Pricing Model

Author

Listed:
  • Levent Akdeniz
  • W. Davis Dechert

    (Department of Economics, University of Houston)

Abstract

In this study we combine the dynamic programming method with the projection methods for solving stochastic growth models. One of the inconveniences of Judd's projection technique is that finding a good initial guess is not that easy or it is time costly especially when the dimensionality of the problem is high. Secondly, there is no theoretical assurance that projection technique converges to the true policy function. First we use the dynamic programming method to obtain an approximate solution for the policy function. Since the approximate solution is in the vicinity of the true solution, we use those coefficients as the initial guess for the projection method. Then we use Judd's projection method to find an exact solution for the policy function. Once we find the exact solution for the policy function we check whether or not projection method converged to the true policy function. We do that by using the dynamic programming method to test whether the policy function satisfies the Bellman equation.

Suggested Citation

  • Levent Akdeniz & W. Davis Dechert, "undated". "Risk and Return in a Dynamic Asset Pricing Model," Computing in Economics and Finance 1996 _064, Society for Computational Economics.
  • Handle: RePEc:sce:scecf6:_064
    as

    Download full text from publisher

    File URL: http://www.unige.ch/ce/ce96/ps/anders-e.eps
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philippe Weil, 1990. "Nonexpected Utility in Macroeconomics," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 105(1), pages 29-42.
    2. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    3. H. M. Amman & D. A. Kendrick & J. Rust (ed.), 1996. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 1, number 1.
    4. Hans M. Amman & David A. Kendrick, . "Computational Economics," Online economics textbooks, SUNY-Oswego, Department of Economics, number comp1.
    5. Rust, John, 1996. "Numerical dynamic programming in economics," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 14, pages 619-729, Elsevier.
    6. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evan W. Anderson & Lars Peter Hansen, "undated". "Perturbation Methods for Risk-Sensitive Economies," Computing in Economics and Finance 1996 _062, Society for Computational Economics.
    2. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, April.
    3. Kenneth L. Judd & Lilia Maliar & Serguei Maliar & Inna Tsener, 2017. "How to solve dynamic stochastic models computing expectations just once," Quantitative Economics, Econometric Society, vol. 8(3), pages 851-893, November.
    4. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    5. Barillas, Francisco & Fernandez-Villaverde, Jesus, 2007. "A generalization of the endogenous grid method," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2698-2712, August.
    6. Yongyang Cai & Kenneth L. Judd, 2023. "A simple but powerful simulated certainty equivalent approximation method for dynamic stochastic problems," Quantitative Economics, Econometric Society, vol. 14(2), pages 651-687, May.
    7. Christiano, Lawrence J. & Fisher, Jonas D. M., 2000. "Algorithms for solving dynamic models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1179-1232, July.
    8. Dario Caldara & Jesus Fernandez-Villaverde & Juan Rubio-Ramirez & Wen Yao, 2012. "Computing DSGE Models with Recursive Preferences and Stochastic Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 188-206, April.
    9. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    10. Christophe Gouel, 2013. "Comparing Numerical Methods for Solving the Competitive Storage Model," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 267-295, February.
    11. Kato, Ryo & Nishiyama, Shin-Ichi, 2005. "Optimal monetary policy when interest rates are bounded at zero," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 97-133, January.
    12. Dario Caldara & Jesus Fernandez-Villaverde & Juan F. Rubio-Ramirez & Wen Yao, 2009. "Computing DSGE Models with Recursive Preferences," PIER Working Paper Archive 09-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    13. John Stachurski, 2008. "Continuous State Dynamic Programming via Nonexpansive Approximation," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 141-160, March.
    14. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2010. "A Cluster-Grid Projection Method: Solving Problems with High Dimensionality," NBER Working Papers 15965, National Bureau of Economic Research, Inc.
    15. Michael Reiter, "undated". "Solving Higher-Dimensional Continuous Time Stochastic Control Problems by Value Function Interpolation," Computing in Economics and Finance 1997 135, Society for Computational Economics.
    16. Dan Cao & Wenlan Luo & Guangyu Nie, 2023. "Global GDSGE Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 199-225, December.
    17. Serguei Maliar & John Taylor & Lilia Maliar, 2016. "The Impact of Alternative Transitions to Normalized Monetary Policy," 2016 Meeting Papers 794, Society for Economic Dynamics.
    18. Francis X. Diebold, 1998. "The Past, Present, and Future of Macroeconomic Forecasting," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 175-192, Spring.
    19. Prowse, Victoria L., 2006. "Part-time Work and Occupational Attainment Amongst a Cohort of British Women," IZA Discussion Papers 2342, Institute of Labor Economics (IZA).
    20. King, Robert P. & Lohano, Heman D., 2006. "Accuracy of Numerical Solution to Dynamic Programming Models," Staff Papers 14230, University of Minnesota, Department of Applied Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf6:_064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.