IDEAS home Printed from https://ideas.repec.org/p/sce/scecf6/_030.html
   My bibliography  Save this paper

A Simple Adaptive Method for Time-Series Forecasting

Author

Listed:
  • Petr Kln
  • Georges Darbellay

    (Institute of Computer Science, Academy of Sciences of the Czech Republic)

Abstract

Many financial time series look erratic and their evolution is notoriously hard to forecast. Most if not all economist do not see financial markets as being governed by some low-dimensional system of deterministic equations. Rather, it is generally accepted that financial variables evolve under the influence of a high number of factors. Therefore, it appears sensible to model such systems within a stochastic framework. In this paper we present an information- theoretic approach to the problem of estimating an adaptive stochastic model for forecasting the short-term evolution of ``difficult discrete time sequences. As the estimation of the model parameters is very fast, the time scale may be very short. The model is adaptive in the sense that both the set of past data, used for forecasting the next value, as well as their probability masses are automatically adjusted at each step. By ``difficult time sequence we understand that the conditional probability density of every new value conditioned on the knowledge of past data is near to the uniform distribution. In other words, there is a lot of uncertainty in the relation between the newest value and past data.

Suggested Citation

  • Petr Kln & Georges Darbellay, "undated". "A Simple Adaptive Method for Time-Series Forecasting," Computing in Economics and Finance 1996 _030, Society for Computational Economics.
  • Handle: RePEc:sce:scecf6:_030
    as

    Download full text from publisher

    File URL: http://www.unige.ch/ce/ce96/ps/klan.eps
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf6:_030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.