IDEAS home Printed from https://ideas.repec.org/p/sce/scecf4/27.html
   My bibliography  Save this paper

Surrogate Data Analysis and Stochastic Chaotic Modelling: Application to Stock Exchange Returns Series

Author

Listed:
  • Constantinos VORLOW
  • Antonios ANTONIOU
  • Catherine KYRTSOU

Abstract

We investigate for evidence of complex-deterministic dynamics in financial returns time series. By combining the Surrogate Data Analysis inferential framework with the MG-GARCH (Kyrtsou and Terraza, 2003) modelling approach, we examine whether the sequences are characterized by aperiodic and nonlinear deterministic cycles or pure randomness. Our results support the hypothesis of complex nonlinear and non-stochastic dynamics in the data generating processes. According to our approach, markets can be assumed to be highly complex, high-dimensional, open and dissipative dynamical systems that need feedback as well as other kinds of inputs in order to operate. These inputs may come in the guise of noise or news. The inputs may also control the evolution of the system dynamics and the knowledge of their nature may allow us to forecast the future states of the market with greater accuracy. To this extent the MG-GARCH model provides a valuable insight on how a feedback mechanism can operate within the structure of stock returns processes and explain stylized facts.

Suggested Citation

  • Constantinos VORLOW & Antonios ANTONIOU & Catherine KYRTSOU, 2004. "Surrogate Data Analysis and Stochastic Chaotic Modelling: Application to Stock Exchange Returns Series," Computing in Economics and Finance 2004 27, Society for Computational Economics.
  • Handle: RePEc:sce:scecf4:27
    as

    Download full text from publisher

    File URL: http://repec.org/sce2004/up.2735.1075900866.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chung-Ming Kuan, 2006. "Artificial Neural Networks," IEAS Working Paper : academic research 06-A010, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    2. Brock,W.A. & Hommes,C.H., 2001. "Evolutionary dynamics in financial markets with many trader types," Working papers 7, Wisconsin Madison - Social Systems.
    3. C. H. Hommes, 2001. "Financial markets as nonlinear adaptive evolutionary systems," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 149-167.
    4. Andrea Gaunersdorfer & Cars Hommes, 2007. "A Nonlinear Structural Model for Volatility Clustering," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 265-288, Springer.
    5. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    6. A. G. Malliaris & Jerome L. Stein, 2005. "Methodological issues in asset pricing: Random walk or chaotic dynamics," World Scientific Book Chapters, in: Economic Uncertainty, Instabilities And Asset Bubbles Selected Essays, chapter 8, pages 85-115, World Scientific Publishing Co. Pte. Ltd..
    7. Catherine Kyrtsou & Michel Terraza, 2003. "Is it Possible to Study Chaotic and ARCH Behaviour Jointly? Application of a Noisy Mackey–Glass Equation with Heteroskedastic Errors to the Paris Stock Exchange Returns Series," Computational Economics, Springer;Society for Computational Economics, vol. 21(3), pages 257-276, June.
    8. Chiarella, Carl & Dieci, Roberto & Gardini, Laura, 2002. "Speculative behaviour and complex asset price dynamics: a global analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 173-197, October.
    9. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    10. Andrea Gaunersdorfer & Cars Hommes & Florian Wagener, 2001. "Adaptive Beliefs and the volatility of asset prices," CeNDEF Workshop Papers, January 2001 5A.1, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    11. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    12. Kyrtsou, Catherine & Terraza, Michel, 2002. "Stochastic chaos or ARCH effects in stock series?: A comparative study," International Review of Financial Analysis, Elsevier, vol. 11(4), pages 407-431.
    13. Gaunersdorfer, Andrea, 2000. "Endogenous fluctuations in a simple asset pricing model with heterogeneous agents," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 799-831, June.
    14. Chen, Shu-Heng & Lux, Thomas & Marchesi, Michele, 2001. "Testing for non-linear structure in an artificial financial market," Journal of Economic Behavior & Organization, Elsevier, vol. 46(3), pages 327-342, November.
    15. Catherine Kyrtsou & Walter C. Labys & Michel Terraza, 2004. "Noisy chaotic dynamics in commodity markets," Empirical Economics, Springer, vol. 29(3), pages 489-502, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catherine Kyrtsou & Michel Terraza, 2003. "Is it Possible to Study Chaotic and ARCH Behaviour Jointly? Application of a Noisy Mackey–Glass Equation with Heteroskedastic Errors to the Paris Stock Exchange Returns Series," Computational Economics, Springer;Society for Computational Economics, vol. 21(3), pages 257-276, June.
    2. Kyrtsou, Catherine & Terraza, Michel, 2002. "Stochastic chaos or ARCH effects in stock series?: A comparative study," International Review of Financial Analysis, Elsevier, vol. 11(4), pages 407-431.
    3. Catherine Kyrtsou & Michel Terraza, 2010. "Seasonal Mackey–Glass–GARCH process and short-term dynamics," Empirical Economics, Springer, vol. 38(2), pages 325-345, April.
    4. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    5. He, Xue-Zhong & Li, Youwei, 2007. "Power-law behaviour, heterogeneity, and trend chasing," Journal of Economic Dynamics and Control, Elsevier, vol. 31(10), pages 3396-3426, October.
    6. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    7. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    8. Catherine Kyrtsou & Walter C. Labys & Michel Terraza, 2004. "Noisy chaotic dynamics in commodity markets," Empirical Economics, Springer, vol. 29(3), pages 489-502, September.
    9. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    10. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Kiel Working Papers 1426, Kiel Institute for the World Economy (IfW Kiel).
    12. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    13. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    14. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    15. Xue-Zhong He, 2003. "Asset Pricing, Volatility and Market Behaviour: A Market Fraction Approach," Research Paper Series 95, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Youwei Li & Xue-Zhong (Tony) He, 2005. "Heterogeneity, Profitability and Autocorrelations," Computing in Economics and Finance 2005 244, Society for Computational Economics.
    17. Catherine Kyrtsou & Michel Terraza, 2000. "Is It Possible To Study Jointly Chaotic And Arch Behaviour? Application Of A Noisy Mackey-Glass Equation With Heteroskedastic Errors To The Paris Stock Exchange," Computing in Economics and Finance 2000 Z226, Society for Computational Economics.
    18. Yankou Diasso, 2014. "Dynamique du prix international du coton : aléas, aversion au risque et chaos," Recherches économiques de Louvain, De Boeck Université, vol. 80(4), pages 53-86.
    19. Dieci, Roberto & Foroni, Ilaria & Gardini, Laura & He, Xue-Zhong, 2006. "Market mood, adaptive beliefs and asset price dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 520-534.
    20. C. Chiarella & X-Z. He, 2001. "Asset price and wealth dynamics under heterogeneous expectations," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 509-526.

    More about this item

    Keywords

    MG-GARCH; Surrogate Data Analysis; Chaos; Complexity;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • D40 - Microeconomics - - Market Structure, Pricing, and Design - - - General
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf4:27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.