IDEAS home Printed from https://ideas.repec.org/p/sce/scecf1/114.html
   My bibliography  Save this paper

Parallelization and Performance of Portfolio Choice Models

Author

Listed:
  • A. Abdelkhalek, A. Bilas and A. Michaelides

Abstract

We show how applications in computational economics can take advantage of modern parallel architectures to reduce the computation time in a wide array of models that have been, to date, computationally intractable. The specific application comes from solving a portfolio choice model over the lifecycle in the presence of undiversifiable labor income risk, borrowing and short sale constraints. We provide an efficient parallel implementation and introduce a new benchmark for parallel computer architectures from an emerging and important class of applications. We conclude that emerging applications in this area of computational economics exhibit adequate parallelism to achieve, after a number of optimization steps, almost linear speedup for system sizes up to 64 processors on today's hardware shared memory multiprocessors.

Suggested Citation

  • A. Abdelkhalek, A. Bilas and A. Michaelides, 2001. "Parallelization and Performance of Portfolio Choice Models," Computing in Economics and Finance 2001 114, Society for Computational Economics.
  • Handle: RePEc:sce:scecf1:114
    as

    Download full text from publisher

    File URL: http://www.eecg.toronto.edu/tech_reports/index.html
    File Function: main text
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morozov, Sergei & Mathur, Sudhanshu, 2009. "Massively parallel computation using graphics processors with application to optimal experimentation in dynamic control," MPRA Paper 30298, University Library of Munich, Germany, revised 04 Apr 2011.
    2. Sergei Morozov & Sudhanshu Mathur, 2012. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 151-182, August.
    3. Yongyang Cai & Kenneth Judd & Greg Thain & Stephen Wright, 2015. "Solving Dynamic Programming Problems on a Computational Grid," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 261-284, February.
    4. Jurgen A. Doornik & Neil Shephard & David F. Hendry, 2004. "Parallel Computation in Econometrics: A Simplified Approach," Economics Papers 2004-W16, Economics Group, Nuffield College, University of Oxford.
    5. Mathur, Sudhanshu & Morozov, Sergei, 2009. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," MPRA Paper 16721, University Library of Munich, Germany.

    More about this item

    Keywords

    Parallel Programming; Portfolio Choice;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf1:114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.