IDEAS home Printed from https://ideas.repec.org/p/sce/scecf1/113.html
   My bibliography  Save this paper

Krylov Methods and Preconditioning in Computational Economics Problems

Author

Listed:
  • Mico Mrkaic and Giorgio Pauletto

Abstract

Krylov subspace methods have proven to be powerful methods for solving sparse linear systems arising in several engineering problems. More recently, these methods have been successfully applied in computational economics, for instance in the solution of forward-looking macroeconometric models (Gilli and Pauletto and Pauletto and Gilli), dynamic programming problems (Mrkaic) and pricing of financial options (Gilli, Kellezi and Pauletto). Since Krylov methods can suffer from slow convergence, one can modify the original linear system in order to improve convergence properties. This is known as preconditioning. In this paper, we investigate the effects of several preconditioning techniques in the framework of dynamic programming problems and financial option pricing. Very few theoretical results on preconditioning are known and experiments have to be conducted to recognize which classes of problems can be best solved using a given Krylov method and a given preconditioner.

Suggested Citation

  • Mico Mrkaic and Giorgio Pauletto, 2001. "Krylov Methods and Preconditioning in Computational Economics Problems," Computing in Economics and Finance 2001 113, Society for Computational Economics.
  • Handle: RePEc:sce:scecf1:113
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    Sparse linear systems; computational economics; Krylov methods; preconditioning; dynamic programming; option pricing;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf1:113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.