IDEAS home Printed from https://ideas.repec.org/p/sce/scecf1/11.html
   My bibliography  Save this paper

Stability of Pareto-Zipf Law in Non-Stationary Economies

Author

Listed:
  • Sorin Solomon and Peter Richmond

Abstract

Generalized Lotka-Volterra (GLV) models extending the (70 year old) logistic equation to stochastic systems consisting of a multitude of competing auto-catalytic components lead to power distribution laws of the (100 year old) Pareto-Zipf type. In particular, when applied to economic systems, GLV leads to power laws in the relative individual wealth distribution and in the market returns. These power laws and their exponent a are invariant to arbitrary variations in the total wealth of the system and to other endogenous and exogenous factors. The measured value of the exponent a = 1.4 is related to built-in human social and biological constraints.

Suggested Citation

  • Sorin Solomon and Peter Richmond, 2001. "Stability of Pareto-Zipf Law in Non-Stationary Economies," Computing in Economics and Finance 2001 11, Society for Computational Economics.
  • Handle: RePEc:sce:scecf1:11
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mimkes, Jürgen, 2010. "Stokes integral of economic growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1665-1676.
    2. Navarro-Barrientos, Jesús Emeterio & Cantero-Álvarez, Rubén & Matias Rodrigues, João F. & Schweitzer, Frank, 2008. "Investments in random environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2035-2046.
    3. Solomon, Sorin & Richmond, Peter, 2001. "Power laws of wealth, market order volumes and market returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 188-197.
    4. G. Yaari & D. Stauffer & S. Solomon, 2008. "Intermittency and Localization," Papers 0802.3541, arXiv.org, revised Mar 2008.
    5. Alan D. Zimm, 2005. "Derivation of a Logistic Equation for Organizations, and its Expansion into a Competitive Organizations Simulation," Computational and Mathematical Organization Theory, Springer, vol. 11(1), pages 37-57, May.
    6. Ausloos, M. & Bronlet, Ph., 2003. "Strategy for investments from Zipf law(s)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 30-37.
    7. Smirnov Alexander D., 2018. "Stochastic Logistic Model of the Global Financial Leverage," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 18(1), pages 1-20, January.
    8. Aleksejus Kononovicius & Valentas Daniunas, 2013. "Agent-based and macroscopic modeling of the complex socio-economic systems," Papers 1303.3693, arXiv.org, revised Apr 2013.

    More about this item

    Keywords

    Logistic Equation; Stochastic Multiplicative dynamics; Pareto power laws;
    All these keywords.

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf1:11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.