IDEAS home Printed from https://ideas.repec.org/p/sbs/wpsefe/2002mf02.html
   My bibliography  Save this paper

A Risk-Neutral Parametric Liquidity Model for Derivatives

Author

Listed:
  • David Bakstein
  • Sam Howison

Abstract

We develop a parameterised model for liquidity effects arising from the trading in an asset. Liquidity is defined via a combination of a trader's individual transaction cost and a price slippage impact, which is felt by all market participants. The chosen definition allows liquidity to be observable in a centralised order-book of an asset as is usually provided in most non-specialist exchanges. The discrete-time version of the model is based on the CRR binomial tree and in the appropriate continuous-time limits we derive various nonlinear partial differential equations. Both versions can be directly applied to the pricing and hedging of options; the nonlinear nature of liquidity leads to natural bid-ask spreads that are based on the liquidity of the market for the underlying and the existence of (super-)replication strategies. We test and calibrate our model empirically with high-frequency data of German blue chips and discuss further extensions to the model, including stochastic liquidity.

Suggested Citation

  • David Bakstein & Sam Howison, 2002. "A Risk-Neutral Parametric Liquidity Model for Derivatives," OFRC Working Papers Series 2002mf02, Oxford Financial Research Centre.
  • Handle: RePEc:sbs:wpsefe:2002mf02
    as

    Download full text from publisher

    File URL: http://www.finance.ox.ac.uk/file_links/finecon_papers/2002mf02.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William T. Shaw, 2008. "A model of returns for the post-credit-crunch reality: Hybrid Brownian motion with price feedback," Papers 0811.0182, arXiv.org, revised Aug 2009.
    2. William T. Shaw & Marcus Schofield, 2015. "A model of returns for the post-credit-crunch reality: hybrid Brownian motion with price feedback," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 975-998, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbs:wpsefe:2002mf02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxine Collett (email available below). General contact details of provider: https://edirc.repec.org/data/frcoxuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.