IDEAS home Printed from https://ideas.repec.org/p/ris/smuesw/2020_015.html
   My bibliography  Save this paper

Bootstrap Inference for Quantile Treatment Effects in Randomized Experiments with Matched Pairs

Author

Listed:
  • Jiang, Liang

    (Fudan University)

  • Liu, Xiaobin

    (Zhejiang University)

  • Zhang, Yichong

    (School of Economics, Singapore Management University)

Abstract

This paper examines inference for quantile treatment effects (QTEs) in randomized experiments with matched-pairs designs (MPDs). We derive the limiting distribution of the QTE estimator under MPDs and highlight the difficulty of analytical inference due to parameter tuning. We show that a naive weighted bootstrap fails to approximate the limiting distribution of the QTE estimator under MPDs because it ignores the dependence structure within the matched pairs. We then propose two bootstrap methods that can consistently approximate that limiting distribution: the gradient bootstrap and the weighted bootstrap of the inverse propensity score weighted (IPW) estimator. The gradient bootstrap is free of tuning parameters but requires the knowledge of pairs’ identities. The weighted bootstrap of the IPW estimator does not require such knowledge but involves one tuning parameter. Both methods are straightforward to implement and able to provide pointwise confidence intervals and uniform confidence bands that achieve exact limiting rejection probabilities under the null. We illustrate their finite sample performance using both simulations and a well-known dataset on microfinance.

Suggested Citation

  • Jiang, Liang & Liu, Xiaobin & Zhang, Yichong, 2020. "Bootstrap Inference for Quantile Treatment Effects in Randomized Experiments with Matched Pairs," Economics and Statistics Working Papers 15-2020, Singapore Management University, School of Economics.
  • Handle: RePEc:ris:smuesw:2020_015
    as

    Download full text from publisher

    File URL: https://ink.library.smu.edu.sg/soe_research/2382/
    File Function: Full text
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjie Wang & Yichong Zhang, 2021. "Wild Bootstrap for Instrumental Variables Regressions with Weak and Few Clusters," Papers 2108.13707, arXiv.org, revised Jan 2024.
    2. Yuehao Bai & Jizhou Liu & Max Tabord-Meehan, 2022. "Inference for Matched Tuples and Fully Blocked Factorial Designs," Papers 2206.04157, arXiv.org, revised Nov 2023.
    3. Yuehao Bai & Jizhou Liu & Azeem M. Shaikh & Max Tabord-Meehan, 2022. "Inference in Cluster Randomized Trials with Matched Pairs," Papers 2211.14903, arXiv.org, revised Aug 2024.

    More about this item

    Keywords

    Bootstrap inference; matched pairs; quantile treatment effect; randomized control trials;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:smuesw:2020_015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cheong Pei Qi (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.