Author
Abstract
In the era of big data, economists are exploring new data sources and methodologies to improve economic forecasting. This study examines the potential of big data and machine learning in enhancing the predictive power of international macroeconomic forecasting models. The research utilizes both structured and unstructured data to forecast Korea's GDP growth rate. For structured data, around 200 macroeconomic and financial indicators from Korea and the U.S. were used with machine learning techniques (Random Forest, XGBoost, LSTM) and ensemble models. Results show that machine learning generally outperforms traditional econometric models, particularly for one-quarter-ahead forecasts, although performance varies by country and period. For unstructured data, the study uses Naver search data as a proxy for public sentiment. Using Dynamic Model Averaging and Selection (DMA and DMS) techniques, it incorporates eight Naver search indices alongside traditional macroeconomic variables. The findings suggest that online search data improves predictive power, especially in capturing economic turning points. The study also compares these big data-driven models with a Dynamic Stochastic General Equilibrium (DSGE) model. While DSGE offers policy analysis capabilities, its in-sample forecasts make direct comparison difficult. However, DMA and DMS models using search indices seem to better capture the GDP plunge in 2020. Based on the research findings, the author offers several suggestions to maximize the potential of big data. He stresses the importance of discovering and constructing diverse data sources, while also developing new analytical techniques such as machine learning. Furthermore, he suggests that big data models can be used as auxiliary indicators to complement existing forecasting models, and proposes that combining structural models with big data methodologies could create synergistic effects. Lastly, by using text mining on various online sources to build comprehensive databases, we can secure richer and more real-time economic data. These suggestions demonstrate the significant potential of big data in improving the accuracy of international macroeconomic forecasting, particularly emphasizing its effectiveness in situations where the economy is undergoing rapid changes.
Suggested Citation
Yoon, Sang-Ha, 2024.
"Developing an International Macroeconomic Forecasting Model Based on Big Data,"
World Economy Brief
24-18, Korea Institute for International Economic Policy.
Handle:
RePEc:ris:kiepwe:2024_018
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:kiepwe:2024_018. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geun Hye Son (email available below). General contact details of provider: https://edirc.repec.org/data/kieppkr.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.