IDEAS home Printed from https://ideas.repec.org/p/ris/bkamdt/2018_005.html
   My bibliography  Save this paper

Estimation bayésienne d’un modèle néo-keynésien pour l’économie marocaine

Author

Listed:
  • EL OTHMANI, Jawad

    (Bank Al-Maghrib, Département de la Recherche)

Abstract

Ce travail porte sur l'estimation d'un modèle hybride néo-keynesien (HNKM) formé de trois équations structurelles caractérisant l'économie marocaine. Il s'agit de la courbe de demande, de la courbe d'o¤re et d'une règle Taylor augmentée des réserves de change. Le modèle est estimé par une approche bayésienne à partir des données trimestrielles couvrant la période 1998Q1-2016Q4. Parallèlement et s'inspirant des travaux de Del Negro et Schorfheide (2004), un modèle BVAR-DSGE a été estimé en exploitant les priors issus du modèle HNKM. Les fonctions de réponse impulsionnelles ont été comparées et les performances prédictives de ces deux modèles structurels ont été confrontées à des modèles statistiques alternatifs: le VAR classique et le BVAR. Il ressort des résultats des modèles HNKM et BVAR-DSGE que les réactions des variables aux di¤érents chocs sont globalement similaires et conformes aux prédictions de la théorie économique. L'étude de la qualité prévisionnelle des di¤érents modèles indique que le BVAR-DSGE et le HNKM présentent des avantages comparatifs mais sans dominer, en tous points, les modèles statistiques tels que le VAR classique et le VAR bayésien.

Suggested Citation

  • EL OTHMANI, Jawad, 2018. "Estimation bayésienne d’un modèle néo-keynésien pour l’économie marocaine," Document de travail 2018-5, Bank Al-Maghrib, Département de la Recherche, revised 30 Dec 2018.
  • Handle: RePEc:ris:bkamdt:2018_005
    as

    Download full text from publisher

    File URL: http://www.bkam.ma/content/download/620190/6877918/version/3/file/Estimation+bay%C3%A9sienne+d%E2%80%99un+mod%C3%A8le+n%C3%A9o-keyn%C3%A9sien.pdf
    File Function: Full text
    Download Restriction: s.loukili@bkam.ma
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajar Fanchy & Amal El Mzabi & Ahmed Hefnaoui, 2023. "Identification of fluctuations origins in the Business Cycle in Morocco: Reduced DSGE modelling," Post-Print hal-04304857, HAL.

    More about this item

    Keywords

    HNKM; BVAR-DSGE; BVAR; estimation bayésienne;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General
    • E12 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Keynes; Keynesian; Post-Keynesian; Modern Monetary Theory
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:bkamdt:2018_005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Département Recherche (email available below). General contact details of provider: https://edirc.repec.org/data/bamgvma.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.