IDEAS home Printed from https://ideas.repec.org/p/rbp/wpaper/2021-001.html
   My bibliography  Save this paper

Predicción de variables macroeconómicas en el Perú a través un modelo BVAR con media cambiante en el tiempo

Author

Listed:
  • Pérez Forero, Fernando

    (Banco Central de Reserva del Perú)

Abstract

Realizar predicciones macroeconómicas en un entorno cambiante en el tiempo e incierto es hoy en día un gran desafío. Este trabajo utiliza un modelo VAR Bayesiano con una media cambiante en el tiempo y volatilidad estocástica, y para así elaborar proyecciones para Perú. Estas propiedades mencionadas le brindan al modelo suficiente flexibilidad para considerar los cambios estructurales que potencialmente se registren en la economía. Las proyecciones se realizan principalmente para variables como inflación y crecimiento del PBI, aunque el modelo es suficientemente flexible como para ser adaptado en el futuro hacia el uso de otras variables. Este ejercicio utiliza información de la encuesta de expectativas macroeconómicas como observables para estimar las medias de largo plazo, siguiendo a Banbura and van Vlodrop (2018). Los resultados muestran un buen ajuste, y reafirman la idea asociada a que el uso de encuestas de expectativas permite reducir la incertidumbre a largo plazo, a la vez que los parámetros cambiantes en el tiempo mejoran el poder predictivo del modelo dinámico utilizado.

Suggested Citation

  • Pérez Forero, Fernando, 2021. "Predicción de variables macroeconómicas en el Perú a través un modelo BVAR con media cambiante en el tiempo," Working Papers 2021-001, Banco Central de Reserva del Perú.
  • Handle: RePEc:rbp:wpaper:2021-001
    as

    Download full text from publisher

    File URL: https://www.bcrp.gob.pe/docs/Publicaciones/Documentos-de-Trabajo/2021/documento-de-trabajo-001-2021.pdf
    File Function: Application/pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Density Forecasts; Stochastic Volatility; Time-Varying Parameters;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rbp:wpaper:2021-001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Unit (email available below). General contact details of provider: https://edirc.repec.org/data/bcrgvpe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.