IDEAS home Printed from https://ideas.repec.org/p/qsh/wpaper/56221.html
   My bibliography  Save this paper

Optimal taxation and insurance using machine learning

Author

Listed:
  • Kasy, Maximilian

Abstract

How should one use (quasi-)experimental evidence when choosing policies such as top tax rates, health insurance coinsurance rates, unemployment benefit levels, class sizes in schools, etc.? This paper provides an answer that combines insights from (i) optimal policy theory as developed in the field of public finance, and (ii) machine learning using Gaussian process priors. We propose to choose policies which maximize posterior expected social welfare. We provide explicit formulas for posterior expected social welfare and optimal policies in a wide class of policy problems. The proposed methods are applied to the choice of coinsurance rates in health insurance, using the data of the RAND health insurance experiment. The key tradeoff in this setting is between redistribution toward the sick and insurance revenues. The key empirical relationship the policymaker needs to learn about is the response of health care expenditures to coinsurance rates. Holding everything constant except the estimation method, we obtain much smaller estimates of the optimal coinsurance rate (18% vs. 50%) than those obtained using a conventional ``sufficient statistic'' approach.

Suggested Citation

  • Kasy, Maximilian, 2017. "Optimal taxation and insurance using machine learning," Working Paper 56221, Harvard University OpenScholar.
  • Handle: RePEc:qsh:wpaper:56221
    as

    Download full text from publisher

    File URL: http://scholar.harvard.edu/kasy/node/56221
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qsh:wpaper:56221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Brandon (email available below). General contact details of provider: https://edirc.repec.org/data/cbrssus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.