IDEAS home Printed from https://ideas.repec.org/p/qld/uqcepa/58.html
   My bibliography  Save this paper

Sensitivity analysis of network DEA illustrated in branch banking

Author

Abstract

Users of data envelopment analysis (DEA) often presume efficiency estimates to be robust. While traditional DEA has been exposed to various sensitivity studies, network DEA (NDEA) has so far escaped similar scrutiny. Thus, there is a need to investigate the sensitivity of NDEA, further compounded by the recent attention it has been receiving in literature. NDEA captures the underlying performance information found in a firm?s interacting divisions or sub-processes that would otherwise remain unknown. Furthermore, network efficiency estimates that account for divisional interactions are more representative of a dynamic business. Following various data perturbations overall findings indicate positive and significant rank correlations when new results are compared against baseline results - suggesting resilience. Key findings show that, (a) as in traditional DEA, greater sample size brings greater discrimination, (b) removing a relevant input improves discrimination, (c) introducing an extraneous input leads to a moderate loss of discrimination, (d) simultaneously adjusting data in opposite directions for inefficient versus efficient branches shows a mostly stable NDEA, (e) swapping divisional weights produces a substantial drop in discrimination, (f) stacking perturbations has the greatest impact on efficiency estimates with substantial loss of discrimination, and (g) layering suggests that the core inefficient cohort is resilient against omission of benchmark branches. Various managerial implications that follow from empirical findings are discussed in conclusions.

Suggested Citation

  • N. Avkiran, 2010. "Sensitivity analysis of network DEA illustrated in branch banking," CEPA Working Papers Series WP122010, School of Economics, University of Queensland, Australia.
  • Handle: RePEc:qld:uqcepa:58
    as

    Download full text from publisher

    File URL: https://economics.uq.edu.au/files/5223/WP122010.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    2. Rolf Färe & Shawna Grosskopf & Gerald Whittaker, 2014. "Network DEA II," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 307-327, Springer.
    3. Avkiran, Necmi K., 2007. "Stability and integrity tests in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 41(3), pages 224-234, September.
    4. Yu, Ming-Miin & Lin, Erwin T.J., 2008. "Efficiency and effectiveness in railway performance using a multi-activity network DEA model," Omega, Elsevier, vol. 36(6), pages 1005-1017, December.
    5. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    6. repec:cor:louvrp:-2215 is not listed on IDEAS
    7. Lawrence Seiford & Joe Zhu, 1999. "Sensitivity and Stability of the Classifications of Returns to Scale in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 12(1), pages 55-75, August.
    8. Joseph Paradi & Mette Asmild & Paul Simak, 2004. "Using DEA and Worst Practice DEA in Credit Risk Evaluation," Journal of Productivity Analysis, Springer, vol. 21(2), pages 153-165, March.
    9. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    10. Dan Horsky & Paul Nelson, 2006. "Testing the Statistical Significance of Linear Programming Estimators," Management Science, INFORMS, vol. 52(1), pages 128-135, January.
    11. D U A Galagedera & P Silvapulle, 2003. "Experimental evidence on robustness of data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 654-660, June.
    12. Avkiran, Necmi K., 2009. "Opening the black box of efficiency analysis: An illustration with UAE banks," Omega, Elsevier, vol. 37(4), pages 930-941, August.
    13. Tortosa-Ausina, Emili & Grifell-Tatje, Emili & Armero, Carmen & Conesa, David, 2008. "Sensitivity analysis of efficiency and Malmquist productivity indices: An application to Spanish savings banks," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1062-1084, February.
    14. Paradi, Joseph C. & Rouatt, Stephen & Zhu, Haiyan, 2011. "Two-stage evaluation of bank branch efficiency using data envelopment analysis," Omega, Elsevier, vol. 39(1), pages 99-109, January.
    15. Eliane Gomes & João Soares de Mello & Geraldo Souza & Lidia Angulo Meza & João Mangabeira, 2009. "Efficiency and sustainability assessment for a group of farmers in the Brazilian Amazon," Annals of Operations Research, Springer, vol. 169(1), pages 167-181, July.
    16. SHOKOUHI, Amir H. & HATAMI-MARBINI, Adel & TAVANA, Madjid & SAATI, Saber, 2010. "A robust optimization approach for imprecise data envelopment analysis," LIDAM Reprints CORE 2215, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    2. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "Data envelopment analysis 1978–2010: A citation-based literature survey," Omega, Elsevier, vol. 41(1), pages 3-15.
    3. Yu, Ming-Miin, 2010. "Assessment of airport performance using the SBM-NDEA model," Omega, Elsevier, vol. 38(6), pages 440-452, December.
    4. Lozano, Sebastián, 2016. "Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector," Omega, Elsevier, vol. 60(C), pages 73-84.
    5. Zhao, Y. & Triantis, K. & Murray-Tuite, P. & Edara, P., 2011. "Performance measurement of a transportation network with a downtown space reservation system: A network-DEA approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1140-1159.
    6. Mohamed Dia & Amirmohsen Golmohammadi & Pawoumodom M. Takouda, 2020. "Relative Efficiency of Canadian Banks: A Three-Stage Network Bootstrap DEA," JRFM, MDPI, vol. 13(4), pages 1-25, April.
    7. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    8. Lin, Tzu-Yu & Chiu, Sheng-Hsiung, 2013. "Using independent component analysis and network DEA to improve bank performance evaluation," Economic Modelling, Elsevier, vol. 32(C), pages 608-616.
    9. Kelly D.T.Trinh & Valentin Zelenyuk, 2015. "Bootstrap-based testing for network DEA: Some Theory and Applications," CEPA Working Papers Series WP052015, School of Economics, University of Queensland, Australia.
    10. Huang, Tai-Hsin & Lin, Chung-I & Wu, Ruei-Cian, 2019. "Assessing the marketing and investment efficiency of Taiwan’s life insurance firms under network structures," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 132-147.
    11. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    12. lo Storto, Corrado, 2018. "The analysis of the cost-revenue production cycle efficiency of the Italian airports: A NSBM DEA approach," Journal of Air Transport Management, Elsevier, vol. 72(C), pages 77-85.
    13. Akther, Syed & Fukuyama, Hirofumi & Weber, William L., 2013. "Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking," Omega, Elsevier, vol. 41(1), pages 88-96.
    14. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    15. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    16. Vaneet Bhatia & Sankarshan Basu & Subrata Kumar Mitra & Pradyumna Dash, 2018. "A review of bank efficiency and productivity," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 557-600, November.
    17. Huang, Tai-Hsin & Lin, Chung-I & Chen, Kuan-Chen, 2017. "Evaluating efficiencies of Chinese commercial banks in the context of stochastic multistage technologies," Pacific-Basin Finance Journal, Elsevier, vol. 41(C), pages 93-110.
    18. Raéf Bahrini, 2017. "Efficiency Analysis of Islamic Banks in the Middle East and North Africa Region: A Bootstrap DEA Approach," IJFS, MDPI, vol. 5(1), pages 1-13, February.
    19. Liu, John S. & Lu, Wen-Min, 2010. "DEA and ranking with the network-based approach: a case of R&D performance," Omega, Elsevier, vol. 38(6), pages 453-464, December.
    20. Fukuyama, Hirofumi & Weber, William L., 2010. "A slacks-based inefficiency measure for a two-stage system with bad outputs," Omega, Elsevier, vol. 38(5), pages 398-409, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qld:uqcepa:58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SOE IT (email available below). General contact details of provider: https://edirc.repec.org/data/decuqau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.