IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202075.html
   My bibliography  Save this paper

Historical Forecasting of Interest Rate Mean and Volatility of the United States: Is there a Role of Uncertainty?

Author

Listed:
  • Hossein Hassani

    (Research Institute of Energy Management and Planning (RIEMP), University of Tehran, No. 13, Ghods St., Enghelab Ave., Tehran, Iran)

  • Mohammad Reza Yeganegi

    (Department of Accounting, Islamic Azad University, Central Tehran Branch, Tehran 477893855, Iran)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Pretoria, 0002, South Africa)

Abstract

Uncertainty is known to have a negative impact on financial markets through its effects on investors' decisions. In the wake of the ``Great Recession" , quite a few recent studies have highlighted the role of uncertainty in predicting in-sample movements of interest rates. Since in-sample predictability does not guarantee out-of-sample forecasting gains, in this paper, we used historical daily and monthly data for the US to forecast the mean and volatility of interest rate. The results indicate that uncertainty fails to add any statistical gains to the forecast of interest rates for the US. In other words, policymakers in the US are not likely to improve their accuracy of future movements of the policy rate's two first moments by incorporating information derived from metrics of uncertainty.

Suggested Citation

  • Hossein Hassani & Mohammad Reza Yeganegi & Rangan Gupta, 2020. "Historical Forecasting of Interest Rate Mean and Volatility of the United States: Is there a Role of Uncertainty?," Working Papers 202075, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202075
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. N. Bloom, 2016. "Fluctuations in uncertainty," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 4.
    2. Naraidoo, Ruthira & Paya, Ivan, 2012. "Forecasting monetary policy rules in South Africa," International Journal of Forecasting, Elsevier, vol. 28(2), pages 446-455.
    3. Hossein Hassani & Mohammad Reza Yeganegi & Juncal Cuñado & Rangan Gupta, 2020. "Forecasting interest rate volatility of the United Kingdom: evidence from over 150 years of data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(6), pages 1128-1143, April.
    4. Drost, Feike C. & Klaassen, Chris A. J., 1997. "Efficient estimation in semiparametric GARCH models," Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
    5. Mehmet Balcilar & Rangan Gupta & Charl Jooste, 2017. "Long memory, economic policy uncertainty and forecasting US inflation: a Bayesian VARFIMA approach," Applied Economics, Taylor & Francis Journals, vol. 49(11), pages 1047-1054, March.
    6. John Y. Campbell, 2008. "Viewpoint: Estimating the equity premium," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 41(1), pages 1-21, February.
    7. Krippner, Leo, 2013. "Measuring the stance of monetary policy in zero lower bound environments," Economics Letters, Elsevier, vol. 118(1), pages 135-138.
    8. Chuliá, Helena & Guillén, Montserrat & Uribe, Jorge M., 2017. "Measuring uncertainty in the stock market," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 18-33.
    9. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, January.
    10. Ben S. Bernanke, 1983. "Irreversibility, Uncertainty, and Cyclical Investment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 98(1), pages 85-106.
    11. Hassani, Hossein & Yeganegi, Mohammad Reza & Gupta, Rangan, 2019. "Does inequality really matter in forecasting real housing returns of the United Kingdom?," International Economics, Elsevier, vol. 159(C), pages 18-25.
    12. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    13. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    14. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    15. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    16. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    17. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    18. Higgins, Matthew L & Bera, Anil K, 1992. "A Class of Nonlinear ARCH Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 137-158, February.
    19. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    20. Christina Christou & Rangan Gupta & Christis Hassapis & Tahir Suleman, 2018. "The role of economic uncertainty in forecasting exchange rate returns and realized volatility: Evidence from quantile predictive regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(7), pages 705-719, November.
    21. Goodness C. Aye & Rangan Gupta & Chi Keung Marco Lau & Xin Sheng, 2019. "Is there a role for uncertainty in forecasting output growth in OECD countries? Evidence from a time-varying parameter-panel vector autoregressive model," Applied Economics, Taylor & Francis Journals, vol. 51(33), pages 3624-3631, July.
    22. Rangan Gupta & Godwin Olasehinde-Williams & Mark E. Wohar, 2020. "The impact of US uncertainty shocks on a panel of advanced and emerging market economies," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 29(6), pages 711-721, August.
    23. Pichler Paul, 2008. "Forecasting with DSGE Models: The Role of Nonlinearities," The B.E. Journal of Macroeconomics, De Gruyter, vol. 8(1), pages 1-35, July.
    24. Stephen J Taylor, 2007. "Modelling Financial Time Series," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6578, September.
    25. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    26. Killick, Rebecca & Eckley, Idris A., 2014. "changepoint: An R Package for Changepoint Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i03).
    27. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    28. Chuliá, Helena & Gupta, Rangan & Uribe, Jorge M. & Wohar, Mark E., 2017. "Impact of US uncertainties on emerging and mature markets: Evidence from a quantile-vector autoregressive approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 178-191.
    29. Hou, Ai Jun & Suardi, Sandy, 2011. "Modelling and forecasting short-term interest rate volatility: A semiparametric approach," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 692-710, September.
    30. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    31. Gupta, Rangan & Ma, Jun & Risse, Marian & Wohar, Mark E., 2018. "Common business cycles and volatilities in US states and MSAs: The role of economic uncertainty," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 317-337.
    32. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    33. Manela, Asaf & Moreira, Alan, 2017. "News implied volatility and disaster concerns," Journal of Financial Economics, Elsevier, vol. 123(1), pages 137-162.
    34. Hossein Hassani & Emmanuel Sirimal Silva, 2015. "A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts," Econometrics, MDPI, vol. 3(3), pages 1-20, August.
    35. Tian, Shuairu & Hamori, Shigeyuki, 2015. "Modeling interest rate volatility: A Realized GARCH approach," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 158-171.
    36. Wilson Donzwa & Rangan Gupta & Mark E. Wohar, 2019. "Volatility Spillovers between Interest Rates and Equity Markets of Developed Economies," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 8(3), pages 39-50.
    37. Longstaff, Francis A & Schwartz, Eduardo S, 1992. "Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model," Journal of Finance, American Finance Association, vol. 47(4), pages 1259-1282, September.
    38. Bali, Turan G., 2000. "Testing the Empirical Performance of Stochastic Volatility Models of the Short-Term Interest Rate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(2), pages 191-215, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruipeng Liu & Rangan Gupta & Elie Bouri, 2021. "Conventional and Unconventional Monetary Policy Rate Uncertainty and Stock Market Volatility: A Forecasting Perspective," Working Papers 202178, University of Pretoria, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    2. Salisu, Afees A. & Gupta, Rangan & Karmakar, Sayar & Das, Sonali, 2022. "Forecasting output growth of advanced economies over eight centuries: The role of gold market volatility as a proxy of global uncertainty," Resources Policy, Elsevier, vol. 75(C).
    3. Tak Siu & John Lau & Hailiang Yang, 2007. "On Valuing Participating Life Insurance Contracts with Conditional Heteroscedasticity," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(3), pages 255-275, September.
    4. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    5. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    6. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
    7. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    8. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    9. Tse, Chin-Bun & Rodgers, Timothy & Niklewski, Jacek, 2014. "The 2007 financial crisis and the UK residential housing market: Did the relationship between interest rates and house prices change?," Economic Modelling, Elsevier, vol. 37(C), pages 518-530.
    10. Marcel Bräutigam & Marie Kratz, 2019. "Bivariate FCLT for the Sample Quantile and Measures of Dispersion for Augmented GARCH(p, q) processes," Working Papers hal-02176276, HAL.
    11. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    12. Gerrit Reher & Bernd Wilfling, 2016. "A nesting framework for Markov-switching GARCH modelling with an application to the German stock market," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 411-426, March.
    13. Marcel, Bräutigam & Marie, Kratz, 2019. "Bivariate FCLT for the Sample Quantile and Measures of Dispersion for Augmented GARCH(p, q) processes," ESSEC Working Papers WP1909, ESSEC Research Center, ESSEC Business School.
    14. Stelios Arvanitis & Antonis Demos, 2004. "Time Dependence and Moments of a Family of Time‐Varying Parameter Garch in Mean Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 1-25, January.
    15. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2024. "Macro‐financial linkages in the high‐frequency domain: Economic fundamentals and the Covid‐induced uncertainty channel in US and UK financial markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 1581-1608, April.
    16. M. Karanasos & S. Yfanti & J. Hunter, 2022. "Emerging stock market volatility and economic fundamentals: the importance of US uncertainty spillovers, financial and health crises," Annals of Operations Research, Springer, vol. 313(2), pages 1077-1116, June.
    17. Mauro Bernardi & Leopoldo Catania, 2016. "Comparison of Value-at-Risk models using the MCS approach," Computational Statistics, Springer, vol. 31(2), pages 579-608, June.
    18. Y. K. Tse, 2002. "Residual-based diagnostics for conditional heteroscedasticity models," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 358-374, June.
    19. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.