IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/201575.html
   My bibliography  Save this paper

Predicting Stock Returns and Volatility with Investor Sentiment Indices: A Reconsideration using a Nonparametric Causality-in-Quantiles Test

Author

Listed:
  • Mehmet Balcilar

    (Department of Economics, Eastern Mediterranean University, Famagusta, via Mersin 10, Northern Cyprus, Turkey and Department of Economics, University of Pretoria)

  • Rangan Gupta

    (Department of Economics, University of Pretoria)

  • Clement Kyei

    (Department of Economics, University of Pretoria)

Abstract

Evidence of monthly stock returns predictability based on popular investor sentiment indices, namely SBW and SPLS as introduced by Baker and Wurgler (2006, 2007) and Huang et al. (2015) respectively are mixed. While, linear predictive models show that only SPLS can predict excess stock returns, nonparametric models (which accounts for misspecification of the linear frameworks due to nonlinearity and regime changes) finds no evidence of predictability based on either of these two indices for not only stock returns, but also its volatility. However, in this paper, we show that when we use a more general nonparametric causality-in –quantiles model of Balcilar et al., (2015), in fact, both SBW and SPLS can predict stock returns and its volatility, with SPLS being a relatively stronger predictor of excess returns during bear and bull regimes, and SBW being a relatively powerful predictor of volatility of excess stock returns, barring the median of the conditional distribution.

Suggested Citation

  • Mehmet Balcilar & Rangan Gupta & Clement Kyei, 2015. "Predicting Stock Returns and Volatility with Investor Sentiment Indices: A Reconsideration using a Nonparametric Causality-in-Quantiles Test," Working Papers 201575, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:201575
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marwane El Alaoui & Elie Bouri & Nehme Azoury, 2020. "The Determinants of the U.S. Consumer Sentiment: Linear and Nonlinear Models," IJFS, MDPI, vol. 8(3), pages 1-13, July.
    2. Tihana Škrinjarić & Branka Marasović & Boško Šego, 2021. "Does the Croatian Stock Market Have Seasonal Affective Disorder?," JRFM, MDPI, vol. 14(2), pages 1-16, February.

    More about this item

    Keywords

    Investor sentiment; stock markets; linear causality; nonlinear dependence; nonparametric causality; causality-in-quantiles;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G02 - Financial Economics - - General - - - Behavioral Finance: Underlying Principles
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.